The European Space Agency’s Gaia spacecraft was launched in 2013 with the aim of making the largest and most precise map of the Milky Way by taking measurements of almost one billion astronomical objects. It has a focal plane that consists of 106 Charge-Coupled Devices (CCDs), custom designed by Teledyne e2v to help fulfil its objectives. These detectors make measurements of positions, velocities, parallaxes, and other physical properties of any objects, with a sufficiently bright enough magnitude, that pass through their field of view. Operating in space means that the Gaia CCDs have been subjected to radiation damage, both ionizing and non-ionizing in nature, in orbit from predominantly solar radiation. This radiation-induced damage leads to the formation of trap defects in the CCD silicon lattice which can trap electrons during readout leading to the increase of charge transfer inefficiency (CTI) and a reduction in the quality of the returned science data. From previous analysis of in-flight data, the degradation of the CCDs, measured from an increase in CTI, has been calculated to be less that that predicted from pre-flight models and on-ground tests. In this study, in-flight and on-ground data is modelled so that the trap landscapes can be further investigated. This was achieved using a charge transfer model, the Charge Distortion Model (CDM), integrated in the Pyxel detector simulation toolkit. Other simulations, namely C3TM, are used in conjunction with the results from Pyxel to obtain a more thorough understanding of the trap landscape causing the observed CTI effects.
The European Space Agency’s Gaia spacecraft has been operating in L2 ever since its launch in December 2013 with a payload that includes 106 scientific charge-coupled devices (CCDs). Due to the predicted radiation environment at the pre-flight testing stage in addition to the high level of accuracy demanded by the science objectives, the non-ionizing energy loss (NIEL) damage on the detectors was identified as a major factor that could affect the science goals of the mission. Here, we present the analysis of an extended set of charge calibration data, taken up to almost six years after launch. It is found that the rate of radiation damage accumulation by the CCDs has not differed significantly from previous results. While the parallel and serial CTI measure an increase in time, the trap defect landscape is still dominated by the pre-flight defects rather than the radiation-induced traps. CCD devices that were predicted to have a lower NIEL dose measure comparatively larger rates of CTI increase. In addition to this, thicker devices have been measured to have lower serial CTI values compared to thinner devices. The initial parallel CTI values have also been found to be dependent on manufacture year.
The European Space Agency’s Gaia spacecraft was launched in December 2013 and has been in orbit at the Earth-Sun Lagrange point 2 (L2) for over 6 years. The spacecraft measures the positions, distances, space motions and many other physical characteristics of around one billion stars in the Milky Way and beyond. It has a focal plane of 106 Charge-Coupled Devices (CCDs) which have all been performing well but have been measuring a small but quantifiable degradation in performance in time due to Non-Ionizing Energy Loss (NIEL) damage from interstellar radiation. This NIEL damage produces trap defects which can capture charge from signals and reduces the quality of the data. Gaia’s original mission lifetime was planned to be around 5 years and the pre-flight testing and radiation damage analysis was tailored around those timescales as well as with the projected solar activity before launch. Closer to the time of launch and during Gaia’s years of orbit, it has been noted that the solar activity was lower than what was initially predicted. From the previous analysis of in-flight data in 2016, it was calculated that Gaia was experiencing an order of magnitude less radiation damage than was predicted. This paper describes the analysis of charge calibration data and corresponding Charge Transfer Inefficiency (CTI) measurements from the in-flight CCDs, both near the beginning of the mission and after more than 5 years in orbit to quantify the radiation damage impact. These sets of results can be compared with those from the pre-flight tests which can be used to evaluate and understand the differences between the on-ground and in-flight results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.