The primary sources of damage on the National Ignition Facility (NIF) Grating Debris Shield (GDS) are attributed to
two independent types of laser-induced particulates. The first comes from the eruptions of bulk damage in a
disposable debris shield downstream of the GDS. The second particle source comes from stray light focusing on
absorbing glass armor at higher than expected fluences. We show that the composition of the particles is
secondary to the energetics of their delivery, such that particles from either source are essentially benign if they
arrive at the GDS with low temperatures and velocities.
Phase-defects on optics used in high-power lasers can cause light intensification leading to laser-induced damage of
downstream optics. We introduce Linescan Phase Differential Imaging (LPDI), a large-area dark-field imaging
technique able to identify phase-defects in the bulk or surface of large-aperture optics with a 67 second scan-time.
Potential phase-defects in the LPDI images are indentified by an image analysis code and measured with a Phase
Shifting Diffraction Interferometer (PSDI). The PSDI data is used to calculate the defects potential for downstream
damage using an empirical laser-damage model that incorporates a laser propagation code. A ray tracing model of LPDI
was developed to enhance our understanding of its phase-defect detection mechanism and reveal limitations.
A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm2 and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO2 lasers.
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. Each beam line requires three different large-aperture optics made from single crystal potassium dihydrogen phosphate (KDP). KDP is used in the plasma electrode pockels cell (PEPC) and frequency doubling crystals, while deuterated KDP (DKDP) crystals are used for frequency tripling. Methods for reproducible growth of single crystals of KDP that meet all material requirements have been developed that enable us to meet the optics demands of the NIF. Once material properties are met, fabrication of high aspect ratio single crystal optics (42 × 42 × 1 cm) to meet laser performance specifications is the next challenge. More than 20% of the required final crystal optics have been fabricated and meet the stringent requirements of the NIF system. This manuscript summarizes the challenges and successes in the production of these large single-crystal optics.
The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical
materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into
production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be
achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser
performance better than the design. A suite of custom metrology tools have been designed, built and installed at the
vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront
specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of
spatial scale-lengths from 10 μm to 0.5 m (full aperture). We have continued our multi-year research effort to improve
the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric
coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed
and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as
raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development
of even better optical materials.
A set of twenty-three 20-L crystallizer runs exploring the importance of several engineering variables found that growth temperature is the most important variable controlling damage resistance of DKDP over the conditions investigated. Boules grown between 45 degree(s)C and room temperature have a 50% probability of 3(omega) bulk damage that is 1.5 to 2 times higher than boules grown between 65 and 45 degree(s)C. This raises their damage resistance above the NIF tripler specification for 8 J/cm2 operation by a comfortable margin. Solution impurity levels do not correlate with damage resistance for iron less than 200 ppb and aluminum less than 2000 ppb. The possibility that low growth temperatures could increase damage resistance in NIF- scale boules was tested by growing a large boule in a 1000-L crystallizer with a supplemental growth solution tank. Four samples representing early and late pyramid and prism growth are very close to the specification as best it is understood at the present. Implications of low temperature growth for meeting absorbance, homogeneity, and other material specifications are discussed.
This paper discusses the results of thermal annealing and in-situ second harmonic generation (SHG) damage tests performed on six rapid growth KDP type 1 doubler crystals at 1064 nm (1(omega) ) on the Zeus automated damage test facility. Unconditioned (S/1) and conditioned (R/1) damage probability tests were performed before and after thermal annealing, then with and without SHG on six doubler crystals from the NIF-size, rapid growth KDP boule F6. The tests revealed that unannealed, last-grown material from the boule in either prismatic or pyramidal sectors exhibited the highest damage curves. After thermal annealing at 160 degree(s)C for seven days, the prismatic sector samples increased in performance ranging from 1.6 to 2.4X, while material from the pyramidal sector increased only modestly, ranging from 1.0 to 1.3X. Second harmonic generation decreased the damage fluence by an average of 20 percent for the S/1 tests and 40 percent for R/1 tests. Conversion efficiencies under test conditions were measured to be 20 to 30 percent and compared quite well to predicted behavior, as modeled by LLNL frequency conversion computer codes.
The National Ignition Facility will require hundreds of very large single crystals (boules) of KDP and KD*P for the amplifier and frequency conversion optics. Rapid growth now routinely produces 250 - 300 kg boules of KDP. Technical hurdles overcome during the past year include inclusion formation and spurious nucleation. Areas of continued interest are control of asymmetry and aspect ratio.
The NIF and LMJ laser systems require about 3380 and 4752 Nd-doped laser glass slabs, respectively. Continuous laser glass melting and forming will be used for the first time to manufacture these slabs. Two vendors have been chosen to produce the glass: Hoya Corporation and Schott Glass Technologies. The laser glass melting systems that each of these two vendors have designed, built and tested are arguably the most advanced in the world. Production of the laser glass will begin on a pilot scale in the fall of 1998.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.