Using ytterbium doped single-clad/double-clad fiber amplifiers, different amplification experiments were conducted on narrow pulse width picosecond light, and the influence of self-phase modulation on pulse frequency domain characteristics during amplification was analyzed. A self developed picosecond oscillator based on semiconductor saturable absorber mirror (SESAM) mode locking is used to directly enter the main amplifier device. The oscillator has a pulse width of 6.8 ps, a repetition rate of 20.76 MHz, and a center wavelength of 1064.3 nm. After amplification, the maximum output power is 315 mW, with an energy of about 15 nJ. The phenomenon of spectral changes caused by selfphase modulation of picosecond pulsed light during amplification is explored. When the output pulse optical power is about 200 mW and the pulse energy is about 10 nJ, and the injection power is 39.4 mW, 134 mW, 229.2 mW, and 326.8 mW, respectively, the corresponding spectral widths are 0.187 nm, 0.522 nm, 0.53 nm, and 0.588 nm, respectively. Experimental research shows that under the same output pulse energy conditions, the smaller the injected optical power, the better the output pulse spectral morphology. As the injected optical power decreases, the effect of pulse shape on self-phase modulation in fiber lasers decreases.
Laser ultrasonic technology has become an effective method and technological means for thickness measurement of metal materials nowadays. Generally, common method for receiving laser ultrasonic signals has piezo-electric transducer (PZT), laser interferometer and electro-magnetic acoustic transducer (EMAT). In this paper, the receiving principles of three kinds of receiving methods are given, and the diagrams of three methods with different thickness obtained by experiments are drawn. Each method has its own advantages and disadvantages, so appropriate receiving method should be selected according to actual needs for engineering application.
In this work, a novel fiber Bragg grating (FBG) sensor is designed for the measurement of motor axis transient torque. The sensing mechanism of FBG is introduced, the mathematical relationship between applied torque and Bragg wavelength is analyzed, and the theoretical model for a dual-FBG sensing structure is established. The two FBGs with different Bragg wavelengths are symmetrically attached onto the surface of the sensing axis, and used as sensing and reference elements, respectively. The structure can effectively relieve the thermal effect and eliminate environmental perturbation. After the calibration of axial torque with respect to Bragg wavelength by using a torque gauge, the measuring range of the fiber-optic torque sensor is 0~15 Nm, the sensitivity is 90.2 pm/Nm, the linearity is 0.9957, the repeatability error is 3.25 %FS, and the hysteresis error is 2.0 %FS. The torque sensing shaft is connected to the driving shaft of a stepper motor with a flexible coupling, and transient torque is obtained in real time with a frequency response bandwidth of <35 kHz, which is limited only by the readout speed of the interrogation system. This work provides a new technique for transient torque measurement of a motor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.