This erratum corrects an error in the article, “Prostate cancer detection from multi-institution multiparametric MRIs using deep convolutional neural networks system,” by Y. Sumathipala et al.
Multiparametric magnetic resonance imaging (mpMRI) of the prostate aids in early diagnosis of prostate cancer, but is difficult to interpret and subject to interreader variability. Our objective is to generate probability maps, overlaid on original mpMRI images to help radiologists identify where a cancer is suspected as a computer-aided diagnostic (CAD). We optimized the holistically nested edge detection (HED) deep convolutional neural network. Our dataset contains T2, apparent diffusion coefficient, and high
The highest performance is seen in random forest model when data from all sequences are used in conjunction, achieving an overall classification accuracy of 83.7%. When using data from one single sequence, the overall accuracies achieved for T1 delayed, venous, arterial, and pre-contrast phase, T2, and T2 fat saturated were 79.1%, 70.5%, 56.2%, 61.0%, 60.0%, and 44.8%, respectively. This demonstrates promising results of utilizing intensity information from multiple MR sequences for accurate classification of renal masses.
We present a fully-automated bottom-up method for pancreas segmentation in computed tomography (CT) images of the abdomen. The method is based on hierarchical coarse-to-fine classification of local image regions (superpixels). Superpixels are extracted from the abdominal region using Simple Linear Iterative Clustering (SLIC). An initial probability response map is generated, using patch-level confidences and a two-level cascade of random forest classifiers, from which superpixel regions with probabilities larger 0.5 are retained. These retained superpixels serve as a highly sensitive initial input of the pancreas and its surroundings to a ConvNet that samples a bounding box around each superpixel at different scales (and random non-rigid deformations at training time) in order to assign a more distinct probability of each superpixel region being pancreas or not.
We evaluate our method on CT images of 82 patients (60 for training, 2 for validation, and 20 for testing). Using ConvNets we achieve maximum Dice scores of an average 68% ± 10% (range, 43-80%) in testing. This shows promise for accurate pancreas segmentation, using a deep learning approach and compares favorably to state-of-the-art methods.
View contact details