A key aspect of the search for earth-like exoplanets with direct imaging, is determining if the exoplanet is in the habitable zone. For mission design of potential future direct imaging missions, such as HabEx and LUVOIR, an efficient cadence of observations is needed. Previous work has shown that three epochs, spanning more than half a period, is the minimum to determine orbital parameters to 10%. One aspect that still needs improvement is the ability to fit multiple planets with limited prior information about which planet is which. Since data from direct observations is expected to consist of multiple objects at each epoch, looking at each epoch separately is not sufficient to decide whether 1) a detected object is part of an exosolar system and 2) which planet it corresponds to. Existing multi-planet trajectory matching libraries, such as “Orbits For The Impatient” (OFTI), currently require the user to specify which data points belong to which planet. This assumes that the user has already matched true-positive detections to planets. Additionally, this planet matching between detected objects needs to be taken into account when assessing the impact of observation scheduling on the accuracy of trajectory estimation. To address this need for fitting orbits to multiple objects with limited knowledge, we propose an approach that uses a Monte Carlo study of different observation schedules and planetary systems. For each case we automatically match observations to planets and check the accuracy of the match. By considering a large number of such cases, we provide constraints on the number of observations and their spacing necessary to “deconfuse” the detections. We present preliminary planet matching success rates for several observation schedules based on simulated planetary systems and assess the accuracy of trajectory fitting combined with OFTI.
KEYWORDS: Sensors, Control systems, Infrared radiation, Satellites, Space operations, Error analysis, Telecommunications, Laser communications, Control systems design, Error control coding
The CubeSat Laser Infrared CrosslinK mission is a joint Massachusetts Institute of Technology (MIT), University of Florida (UF), and NASA Ames Research Center effort to develop laser communications (lasercom) transceivers. The terminals demonstrate full-duplex intersatellite communications and ranging capability using commercial components to enable future large constellations or swarms of nanosatellites as coordinated distributed sensor systems.
CLICK will demonstrate a crosslink between two CubeSats that each host a < 2U lasercom payload. Range control is achieved using differential drag in Low Earth Orbit (LEO), with attitude controlled using a three-axis reaction wheel assembly and attitude sensors, including star trackers.
The lasercom terminals are direct-detect and rate scalable, designed to achieve a 20 Mbps crosslink at ranges from 25 km to 580 km and operate full-duplex at 1537 nm and 1563 nm with 200 mW of transmit power and a 14.6 arcscecond (0.07 milliradian) full width half max (FWHM) beamwidth. The terminals also use a 976 nm, 500 mW, 0.75 degree FWHM beacon and a quadcell for initial acquisition, and a low-rate radio crosslink for exchanging orbit information.
The payload transmitter is a master oscillator power amplifier (MOPA) with fiber Bragg grating for pulse shaping and MEMS fast steering mirror (FSM) for fine pointing, modeled after the MIT Nanosatellite Optical Downlink Experiment. The transceiver leverages UF’s Miniature Optical Communications Transmitter (MOCT) including a chip-scale atomic clock (CSAC). The receiver implements both a time to digital converter (TDC) as well as pulse recovery and matched filtering for precision ranging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.