The Arcus Probe mission concept has been submitted as an Astrophysics Probe Explorer candidate. It features two co-aligned high-resolution grating spectrometers: one for the soft X-ray band and one for the far ultraviolet. Together, these instruments can provide unprecedented performance to address important key questions about the structure and dynamics of our universe across a large range of length scales. The X-ray spectrometer consists of four parallel optical channels, each featuring an X-ray telescope with a fixed array of 216 lightweight, high-efficiency, blazed transmission gratings, and two charge-coupled device readout arrays. Average spectral resolving power λ/Δλ>2500 (3500 expected) across the 12 to 50 Å band and combined effective area >350 cm2 (>470 cm2 expected) near OVII wavelengths are predicted, based on the measured X-ray performance of the spectrometer prototypes and detailed ray trace modeling. We describe the optical and structural design of the grating arrays, from the macroscopic grating petals to the nanoscale gratings bars, grating fabrication, alignment, and X-ray testing. Recent X-ray diffraction efficiency results from chemically thinned grating bars are presented and show performance above mission assumptions.
Future mega-pixel imaging x-ray detectors will require excellent spectral response at soft (E<1keV) x-ray energies while operating at fast frame-rates. We have characterized the sub-keV spectral resolution of two low-noise MIT Lincoln Laboratory CCDs in detail. These devices are identical in format but differ in gate structure and output stage design. We report measurements of the shape of the spectral redistribution function as a function of energy for each of these sensor types and compare our measurements with theoretical expectations. We also assess the implications of the observed response functions for scientific performance in deep x-ray imaging and high-resolution spectroscopy applications.
Future X-ray astrophysics missions will survey large areas of the sky with unparalleled sensitivity, enabled by lightweight, high-resolution optics. These optics inherently produce curved focal surfaces with radii as small as 2 m, requiring a large area detector system that closely conforms to the curved focal surface. We have embarked on a project using a curved charge-coupled device (CCD) detector technology developed at MIT Lincoln Laboratory to provide large-format, curved detectors for such missions, improving performance and simplifying design. We present the current status of this work, which aims to curve back-illuminated, large-format (5 cm x 4 cm) CCDs to 2.5-m radius and confirm X-ray performance. We detail the design of fixtures and the curving process, and present initial results on curving bare silicon samples and monitor devices and characterizing the surface geometric accuracy. The tests meet our accuracy requirement of <5 μm RMS surface non-conformance for samples of similar thickness to the functional detectors. We finally show X-ray performance measurements of planar CCDs that will serve as a baseline to evaluate the curved detectors. The detectors exhibit low noise, good charge-transfer efficiency, and excellent, uniform spectroscopic performance, including in the important soft X-ray band.
High spatial- and spectral-resolution X-ray capabilities are essential for future strategic missions to address the key priorities set forth by the 2020 Decadal Survey on Astronomy and Astrophysics. These missions will require megapixel X-ray imaging detectors more capable than any available today, providing frame rates at least a factor of 20 faster and pixel aspect ratios twice as large, while retaining the low noise and excellent spectral performance of current sensors.
We summarize recent results from our NASA-funded technology development program to develop imaging sensors required for future strategic missions, and describe the prototype CCD sensor we are developing for AXIS, the Advanced X-ray Imaging Satellite mission concept recently proposed in response to NASA’s Astrophysics Probe Explorer call. We have designed and are fabricating at MIT Lincoln Laboratory a 16-output, 1440 x 1440 pixel frame-store CCD to serve as a form/fit/function prototype for AXIS. This sensor incorporates the low-voltage, single-polysilicon gate and low-noise pJFET technologies we have proven in previous work. Our goal is to demonstrate a device meeting or exceeding the noise, spectral resolution and frame-rate requirements of AXIS when operated with the Multi-channel Readout Chip developed by our team at Stanford University. We also describe our strategy for optimizing CCD output amplifier architecture and design for even lower noise and faster readout for AXIS and subsequent high-energy astrophysics missions.
Future high-resolution x-ray imaging missions at both strategic (Probe and Great Observatory) and smaller scales require mega-pixel focal planes with high frame rates and near-theoretical spectroscopic performance. We report test results from advanced charge-coupled devices (CCDs) developed at MIT Lincoln Laboratory for such missions. These devices incorporate two new technologies already demonstrated in small devices: a single-polysilicon gate structure enabling efficient, low-power charge transfer, and a low-noise pJFET output amplifier capable of < 3 electrons RMS noise at megahertz pixel rates. Here we report results from the first application of these technologies in a prototype large format (2k x 1k pixel, 5 x 2.5 cm2) frame transfer CCD with eight parallel outputs. In architecture, total area, and pixel count this device meets requirements for strategic missions. First measurements of noise, charge transfer efficiency and spectral resolution and achieved frame-rate are compared with requirements of candidate missions. Next steps toward maturation of this technology are briefly discussed.
The soft x-ray band covers the characteristic lines of the highly ionized low-atomic-number elements, providing diagnostics of the warm and hot plasmas in star atmospheres, interstellar dust, galaxy halos and clusters, and the cosmic web. High-resolution spectroscopy in this band is best performed with grating spectrometers. Soft x-ray grating spectroscopy with R = λ / Δ λ = > 104 has been demonstrated with critical-angle transmission (CAT) gratings. CAT gratings combine the relaxed alignment and temperature tolerances and the low mass of transmission gratings with high diffraction efficiency blazed in high orders. They are an enabling technology for the proposed Arcus grating explorer and were selected for the Lynx Design Reference Mission grating spectrometer instrument. Both Arcus and Lynx require the manufacture of hundreds to perhaps ~2000 large-area CAT gratings. We are moving toward CAT grating volume manufacturing using 200 mm silicon-on-insulator wafers, 4X optical projection lithography tools, deep reactive-ion etching, and KOH polishing. We have, for the first time, produced high-throughput 200 nm-period CAT gratings ~50% deeper than previously fabricated. X-ray diffraction efficiency is significantly improved in the ~1:25 - 1.75 nm wavelength range, peaking above 40% (sum of blazed orders). A new grating-to-grating alignment technique utilizing cross-support diffraction of visible light is presented, as well as the results of CAT grating emissivity measurements.λ
High-resolution (R = λ/Δλ >2000) x-ray absorption and emission line spectroscopy in the soft x-ray band is a crucial diagnostic for the exploration of the properties of ubiquitous warm and hot plasmas and their dynamics in the cosmic web, galaxy clusters, galaxy halos, intragalactic space, and star atmospheres. Soft x-ray grating spectroscopy with R > 10,000 has been demonstrated with critical-angle transmission (CAT) gratings. CAT gratings combine the relaxed alignment and temperature tolerances and low mass of transmission gratings with high diffraction efficiency blazed in high orders. They are an enabling technology for the proposed Arcus grating explorer and were selected for the Lynx design reference mission grating spectrometer instrument. Both Arcus and Lynx require the manufacture of hundreds to perhaps ≈ 2000 large-area CAT gratings. We are developing new patterning and fabrication process sequences that are conducive to large-format volume processing on stateof-the-art 200 mm wafer tools. Recent x-ray tests on 200 nm-period gratings patterned using e-beam-written masks and 4x projection lithography in conjunction with silicon pore focusing optics demonstrated R ≈ 104 at 1.49 keV. Extending the grating depth from 4 μm to 6 μm is predicted to lead to significant improvements in diffraction efficiency and is part of our current efforts using a combination of deep reactive-ion etching and wet etching in KOH solution. We describe our recent progress in grating fabrication and report our latest diffraction efficiency and modeling results.
KEYWORDS: Charge-coupled devices, Semiconducting wafers, Germanium, Back end of line, Silicon, Atomic layer deposition, Sensors, Reticles, Hard x-rays, Back illuminated sensors
A germanium charge-coupled device (CCD) offers all of the advantages of silicon CCDs – notably excellent uniformity, high energy resolution, and noiseless on-chip charge summation – but covers an even broader spectral range, extending into the hard X-ray band. MIT Lincoln Laboratory has been developing germanium CCDs for applications in astrophysics, with the goal of realizing megapixel-class arrays with read noise less than a few electrons, sensitivity to both soft and hard X-rays, and high energy resolution. We recently realized our first small pixel arrays and have since been working to increase both the format and performance of these devices. In this article, we discuss performance improvements, identification of yield-limiting process steps in fabrication of frontside-illuminated devices, fabrication and analysis of our first backside-illuminated detectors, and design of prototypes which includes a 512 × 512 pixel frame-transfer CCD with 24 µm pixel pitch.
We have developed a new approach for rapid die-level hybridization of backside-illuminated silicon avalanche photodiode (APD) arrays to CMOS readout integrated circuits (ROICs). APD arrays are fabricated on a custom silicon-on-insulator (SOI) wafer engineered with a built-in backside contact and passivation layer. The engineered APD substrate structure facilitates uniform APD substrate removal by selective etching at the die level after bump bonding. The new integration process has the following advantages over wafer-level 3D integration: 1) reduced cost per development cycle since a dedicated full-wafer ROIC fabrication is not needed, 2) compatibility with existing ROICs that are in chip-format from previous fabrication runs, and 3) accelerated schedule. The new approach is applied to produce 32×32 100-μm-pitch silicon GmAPD arrays. Electrical performance of the APD arrays show 100% pixel connectivity and excellent yield before and after substrate removal.
We describe recent advances in backside passivation of large-format charge-coupled devices (CCDs) fabricated on 200- mm diameter wafers. These CCDs utilize direct oxide bonding and molecular-beam epitaxial (MBE) growth to enable high quantum efficiency in the ultraviolet (UV) and soft X-ray bands. In particular, the development of low-temperature MBE growth techniques and oxide bonding processes, which can withstand MBE processing, are described. Several highperformance large-format CCD designs were successfully back-illuminated using the presented process and excellent quantum efficiency (QE) and dark current are measured on these devices. Reflection-limited QE is measured from 200 nm to 800 nm, and dark current of less than 1e- /pixel/sec is measured at 40°C for a 9.5 μm pixel.
The Regolith x-ray Imaging Spectrometer (REXIS) is a coded-aperture soft x-ray imaging instrument on the OSIRIS-REx spacecraft to be launched in 2016. The spacecraft will fly to and orbit the near-Earth asteroid Bennu, while REXIS maps the elemental distribution on the asteroid using x-ray fluorescence. The detector consists of a 2×2 array of backilluminated 1k×1k frame transfer CCDs with a flight heritage to Suzaku and Chandra. The back surface has a thin p+-doped layer deposited by molecular-beam epitaxy (MBE) for maximum quantum efficiency and energy resolution at low x-ray energies. The CCDs also feature an integrated optical-blocking filter (OBF) to suppress visible and near-infrared light. The OBF is an aluminum film deposited directly on the CCD back surface and is mechanically more robust and less absorptive of x-rays than the conventional free-standing aluminum-coated polymer films. The CCDs have charge transfer inefficiencies of less than 10-6, and dark current of 1e-/pixel/second at the REXIS operating temperature of –60 °C. The resulting spectral resolution is 115 eV at 2 KeV. The extinction ratio of the filter is ~1012 at 625 nm.
The steady move towards feature sizes ever deeper in the subwavelength regime has necessitated the increased use of aggressive resolution enhancement techniques (RET) in optical lithography. The use of ever more complex RET methods including strong phase shift masks and complex OPC has led to an alarming increase in the cost of photomasks, which cannot be amortized by many types of semiconductor applications. This paper reviews an alternative RET approach, dense template phase shift lithography, that can substantially reduce the cost of optical RET. The use of simple dense grating templates can also eliminate serious problems encountered in subwavelength lithography including optical proximity and spatial frequency effects. We show that, despite additional design rule restrictions and the use of multiple exposures per critical level, this type of lithography approach can make economic sense depending on the number of wafers produced per critical photomask.
Advanced transistor research requires the patterning of isolated gate feature sizes well below available illumination wavelengths. In this work, we explore the limits of imaging isolated line features using double exposure strong phase shift methods and 248 nm illumination. Fundamental issues such as aerial image size,flare, simple OPC and resist aspect ratio will be addressed. Non-lithographic feature slimming methods such as UV-bake, etch biasing and oxidation will we explored as well. It is desirable that feature slimming processing also reduce line-edge roughness. Using a combination of strong PSM imaging and feature slimming, we have developed processes for the fabrication of sub-25 nm gate features required by our Schottky Barrier transistor device development efforts.
The rise of low-k1 optical lithography in integrated circuit manufacturing has introduced new questions concerning the physical and practical limits of particular subwavelength resolution-enhanced imaging approaches. For a given application, trade-offs between mask complexity, design cycle time, process latitude and process throughput must be well understood. It has recently been shown that a dense-only phase shifting mask (PSM) approach can be applied to technology nodes approaching the physical limits of strong PSM with no proximity effects. Such an approach offers the benefits of reduced mask complexity and design cycle time, at the expense of decreased process throughput and limited design flexibility. In particular, dense-only methods offer k1<0.3, thus enabling 90 nm node lithography with high-numerical aperture 248 nm exposure systems. We present the results of experiments, simulations, and analysis designed to explore the trade-offs inherent in dense-only phase shift lithography. Gate and contact patterns corresponding to various fully scaled circuits are presented, and the relationship between process complexity and design latitude is discussed. Particular attention is given to approaches for obtaining gate features in both the horizontal and vertical orientation. Since semiconductor investment is dependent on cost amortization, the applicability of these methods is also considered in terms of production volume.
The rise of low-k1 optical lithography in IC manufacturing has introduced new questions concerning the physical and practical limits of particular sub-wavelength resoltuion-enhanced imaging approaches. For a given application tradeoffs between mask complexity design cycle time, process latitude and process throughput must be well understood. It has recently been shown that a dense-only PSM approach can be applied to technology nodes approaching the physical limits of strong PSM with no proximity effects. Such an approach offers the benefits of reduced mask complexity and design cycle time, at the expense of decreased process throughput and limited design flexibility. In particular, dense-only methods offer k1 < 0.3, thus enabling 90-nm node lithography with high-NA 248 nm exposure systems. We presents the results of experiments, simulations, and analysis designed to explore the tradeoffs inherent in dense-only phase shift lithography. Gate and contact patterns corresponding to various fully scaled circuits are presented, and the relationship between process complexity and design latitude is discussed. Particular attention is given to approaches for obtaining gate features in both the horizontal and vertical orientation. Since semiconductor investment is dependent on cost amortization, the applicability of these methods is also considered in terms of production volume.
We present results looking into the feasibility of 100-nm Node imaging using KrF, 248-nm, exposure technology. This possibility is not currently envisioned by the 1999 ITRS Roadmap which lists 5 possible options for this 2005 Node, not including KrF. We show that double-exposure strong phase- shift, combined with two mask OPC, is capable of correcting the significant proximity effects present for 100-nm Node imaging at these low k1 factors. We also introduce a new PSM Paradigm, dubbed 'GRATEFUL,' that can image aggressive 100-nm Node features without using OPC. This is achieved by utilizing an optimized 'dense-only' imaging approach. The method also allows the re-use of a single PSM for multiple levels and designs, thus addressing the mask cost and turnaround time issues of concern in PSM technology.
Achieving CD control for sub-100 nm processes will be challenging due to the low-k1 regime that optical patterning approaches will be required to work in. New challenges are expected to arise related to new lithography tools, photoresists, reticle types, and in some cases multiple exposures per layer. This work examines the intra-field CD variations for a range of sub-100 nm resist features patterned by chromeless phase-shift 248-nm lithography. One significant advantage of this patterning technique is that the resist CD's are a function of the exposure dose. This provides the ability to examine the CD variations of a range of linewidths in a single experiment without relying on reticle pattern scaling to determine the linewidth printed on the wafer. In addition to exploring CD control vs feature size, we also examine the full-field depth of focus for these features.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.