Micro-scale light emitting diode (micro-LED) with a chip size less than 100 μm has improved light extraction efficiency due to increased sidewall emission. However, it causes mismatched angular distributions between AlGaInP-based red micro-LED and InGaN-based blue/green counterparts because of the epitaxial material difference. As a result, color shift of RGB micro-LED displays may become visually noticeable. To address this issue, the angular distributions of RGB micro-LEDs are analyzed theoretically and experimentally. In addition, a device structure with top black matrix and taper angle in micro-LEDs is proposed, which greatly suppresses the color shift while keeping a reasonably high light extraction efficiency.
For energy-saving, high efficiency and low pollution, the lighting of LED systems is important for the future of green energy technology industry. The solid state lighting becomes the replacement of traditional lighting, such as, light bulbs and compact fluorescent lamps. Because of the semiconductor characteristics, the luminous efficiency of LEDs is sensitive to the operating temperature. Besides increasing the luminous efficiency, effective controlling electricity and thermal characteristics in the design of LED lighting products is the key point to achieve the best results. LED modules can be combined with multi-grain process or through a combination of multiple LED chips. Accurate analysis of this LED module for the electrical, thermal characteristics and high reliability is the critical knowledge of modular design. In this report, we studied the electrical and thermal coupling phenomenon in solid state lighting systems to analyze their reliability. By experiments and simulations, we obtained the apparent variation of temperature distribution of LED system due to differences of their forward voltages and thermal resistances. These events may reduce their reliability. Besides, the evaluation of optical and chromatic properties was based on the variation of temperature distribution and current of LED system. This is the key technology to predict the optical and chromatic properties of LED system in use.
In recent years, with extensive use of InGaN LED, estimation of LED quality and improvement of LED reliability has become very important. In this report, the noise spectrum measurement techniques were used to estimate the reliability of InGaN LED devices and compare its reliability with its ESD tolerance test result. Experimental results show that the noise spectrum measurement more effectively distinguishes the LED device reliability than that of the current voltage curve measurement. EMMI, SEM and TEM images show that noise source and cause of failure of the LED device are attributed to poor quality of the SiO2 and ITO interface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.