Cost effective multi-wavelength light sources are key enablers for spectroscopic applications at Mid-IR wavelength range. Utilizing a novel Mid-IR Si-based photonic integrated circuit filter and wide-band Mid-IR SLEDs, we show the concept of a light source that covers 2.7…3.5 μm wavelength range with a resolution <1nm. The spectral bands are switchable and tunable and they can be modulated. The source allows for the fabrication of an affordable multi-band gas sensor with good selectivity and sensitivity. The unit price can be lowered in high volumes by utilizing tailored molded IR lens technology and automated packaging and assembling technologies.
The status of the development of the key components of the light source are reported. The Mid-IR PIC is based on the use of thick-SOI technology, SLED is based on AlGaInAsSb materials and the lenses are tailored single crystal, nonoxide glass and heavy metal oxide glasses fabricated by the use of hot-embossing. The packaging concept utilizing automated assembly tools are depicted.
In safety and security applications, the Mid-IR wavelength range covered by the source allows for the detection of several harmful gas components with a single sensor. At the moment, affordable sources are not available. The market impact is expected to be disruptive, since the devices currently in the market are either complicated, expensive and heavy instruments, or the applied measurement principles are inadequate in terms of stability and selectivity.
Cost effective multi-wavelength light sources are key enablers for wide-scale penetration of gas sensors at Mid-IR wavelength range. Utilizing novel Mid-IR Si-based photonic integrated circuits (PICs) filter and wide-band Mid-IR Super Luminescent Light Emitting Diodes (SLEDs), we show the concept of a light source that covers 2.5…3.5 μm wavelength range with a resolution of <1nm. The spectral bands are switchable and tunable and they can be modulated. The source allows for the fabrication of an affordable multi-band gas sensor with good selectivity and sensitivity. The unit price can be lowered in high volumes by utilizing tailored molded IR lens technology and automated packaging and assembling technologies. The status of the development of the key components of the light source are reported. The PIC is based on the use of micron-scale SOI technology, SLED is based on AlGaInAsSb materials and the lenses are tailored heavy metal oxide glasses fabricated by the use of hot-embossing. The packaging concept utilizing automated assembly tools is depicted. In safety and security applications, the Mid-IR wavelength range covered by the novel light source allows for detecting several harmful gas components with a single sensor. At the moment, affordable sources are not available. The market impact is expected to be disruptive, since the devices currently in the market are either complicated, expensive and heavy instruments, or the applied measurement principles are inadequate in terms of stability and selectivity.
A review of applications for tunable diode laser spectroscopy (TDLS) instrumentation in process analytics is presented.
We have investigated applications in olefin production suitable for TDLS instrumentation. The possibility to detect
acetylene impurities in different hydrocarbon backgrounds was investigated by TDLS in the 3 micron wavelength region
using novel GaInAsSb/AlGaAsSb DFB lasers. The performance of the TDLS instrument for detection of acetylene
impurities in pure ethylene and in a gas matrix typical of a hydrogenating reactor was investigated more in detail.
Experiments with in-situ measurements of hydrocarbons in an industrial environment using a modified Siemens TDLS
instrument are also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.