KEYWORDS: Plasmonics, Near field optics, Near field scanning optical microscopy, Solar cells, Thin film solar cells, Silver, Metals, Electron beam lithography, Photovoltaics, Nanoantennas
Domino modes are highly-confined collectivemodes that were first predicted for a periodic arrangement of metallic
parallelepipeds in far-infrared region. The main feature of domino modes is the advantageous distribution of the
local electric field, which is concentrated between metallic elements (hot spots), while its penetration depth in
metal is much smaller than the skin-depth. Therefore, arrays of non-resonant plasmonic nanoantennas exhibiting
domino modes can be employed as broadband light trapping coatings for thin-film solar cells. However, until
now in the excitation of such modes was demonstrated only in numerical simulations. Here, we for the first
time demonstrate experimentally the excitation of optical domino modes in arrays of non-resonant plasmonic
nanoantennas. We characterize the nanoantenna arrays produced by means of electron beam lithography both
experimentally using an aperture-type near-field scanning optical microscope and numerically. The proof of
domino modes concept for plasmonic arrays of nanoantennas in the visible spectral region opens new pathways
for development of low-absorptive structures for effective focusing of light at the nanoscale.
We analyzed capabilities and functionalities of a multisegment superlens recently suggested for long-distance transport of color images with subwavelength resolution. We studied the performance of three- and six-segment nanolens structures by analyzing numerically both transmission and reflection coefficients and by employing the full-wave simulations for a particular source arrangement. Our results suggest that such multisegment structures offer limited subwavelength imaging performance with a relatively narrow frequency band.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.