In this paper alignment and overlay results of the advanced technology nodes are presented. These results were obtained
on specially generated wafers as well as on regular manufacturing-type wafers. For this purpose, a new alignment sensor
was integrated and evaluated in three generations of lithography tools, placed in R&D and mass manufacturing facilities.
The capability of the sensor to align on marks with varying layout was evaluated. Long term overlay stability less than
11 nm was obtained on two different mark types: a standard ASML calibration mark and a flexible Toshiba mark design.
The ability to align on low-contrast marks was validated by a dedicated experiment: typical alignment repeatability
values of ~1 nm (3sigma) on shallow etch depth mark features of 25 nm are obtained for various mark designs, including
flexible pitch alignment marks. From these results, design directions for improved mark detect ability were defined. The
jointly developed mark designs were validated for their alignment robustness by an evaluation of manufacturing wafer
alignment performance. On-product overlay results on manufacturing wafers were measured for three different process
layers of the current technology node. The used alignment strategies were based on new mark capture and fine wafer
alignment mark designs, thereby making optimal use of the mark design flexibility potential of the alignment sensor.
Typical on-product overlay values obtained were less than 17 nm for the Active Area process layer, less than 12 nm for
the Gate Conductor process layer, and less than 19 nm for the Metal-1 process layer; after applying batch corrections, as
determined on a set of 2 send-ahead wafers. All results are based on full batch readout on an offline metrology tool. By
applying optimal batch process corrections for linear terms, typical overlay values range between 10-14 nm, depending
on the layer measured. Finally the sensor's infrared wavelengths were used to demonstrate a robust alignment solution
for wafers containing a semi-transparent hard-mask layer.
Key features are presented of two high-resolution EUV imaging tools: the MS-13 Microstepper wafer exposure and the RIM-13 reticle imaging microscope. The MS-13 has been developed for EUV resist testing and technology evaluation at the 32nm node and beyond, while the RIM-13 is designed for actinic aerial image monitoring of blank and patterned EUV reticles. Details of the design architecture, module layout, major subsystems and performance are presented for both tools.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.