MAVIS passed the Preliminary Design Review in March 2023 and kick started its phase C early June. We are aiming at a Final Design Review in December 2024. I will report on the state of MAVIS design, as well as general project updates, schedule, procurement, risks. We are working on early procurement (Long Lead Item review held on October 2023) as well as on a number of prototype activities I will report on.
From the collection of proposals, telescope and instrument control, driving archives, and simulating and processing data, research software and data engineering underpins almost every process in the advancement of astronomy. And yet this has at times been an afterthought, receiving little attention or funding. Some institutes have always valued software engineering, and the community is slowly coming to realize that the discipline must be supported so that the best science can be carried out. We will discuss software engineering careers within astronomy, and the problems we must tackle if we wish to continue to attract excellent minds to our field from a diverse range of backgrounds. Not just attract but retain them, in an era where flexible working conditions are no longer a perk of academia, and salary disparity between our institutions and industry is larger than ever. We describe the AAO’s Research Data and Software section’s work to provide a stable career path for its engineers, and to attract a portfolio of work which both satisfies the requirements of the instrumentation and data projects, and the needs of our team to have a challenging, creative, and fulfilling work life.
We outline the two workflows used for the reduction of science data from the MCAO Assisted Visible Imager and Spectrograph (MAVIS), and describe the inputs, outputs, and static calibration files required for each process of the workflows. Ronchi masks and pinhole masks are used in combination to determine the geometry of the spectrograph slices, and wavelength calibrations will be enhanced with Etalons. The precision required for the Imager astrometry is obtained by the mid-spatial frequency distortion calibrations. To prototype these complex methods and to test the efficacy of pixel tables and error handling we are using the new ESO PyCPL and PyHDRL libraries, which provide an interface to ESO’s classic Common Pipeline Library (CPL) in the Python ecosystem.
The ESO Common Pipeline Library (CPL) and High-Level Data Reduction Library (HDRL) together form a comprehensive, efficient and robust software toolkit for data reduction pipelines. They were developed in C for reasons of efficiency and speed, however, with the community’s preference towards Python for algorithm prototyping and data reduction, there is a need for access from Python. PyCPL and PyHDRL provide this, making it possible to run existing CPL data reduction recipes from Python as well as developing new recipes in Python. These new recipes are built using the PyCPL and PyHDRL libraries, which provide idiomatic Python interfaces to CPL and HDRL while allowing users to take advantage of the scientific Python ecosystem. PyCPL and PyHDRL are already being used to prototype recipes for the MAVIS instrument pipeline and have been used to develop an extensible pipeline development framework. Here we describe their design, implementation and usage.
MAVIS, the Multi-Conjugate Adaptive Optics Assisted Visible Imager and Spectrograph, is the world’s first facility-grade visible MCAO instrument, currently in the final design phase for ESO’s VLT. The AO system will feed an imager and an integral field spectrograph, with 50% sky coverage at the Galactic pole. MAVIS has unique angular resolution and sensitivity at visible wavelengths, and is highly complementary to both JWST and ELTs. We describe both instruments in detail and the broad range of science cases enabled by them. The imager will be diffraction-limited in V, with 7.36 mas per pixel covering a 30” FOV. A set of at least 5 broad-band, 3 medium-band and 16 narrow-band filters will provide imaging from u to z. The spectrograph uses an advanced image slicer with a selectable spatial sampling of 25 or 50 mas to provide integral field spectroscopy over a FOV of 2.5′′ × 3.6′′, or 5′′ × 7.2′′. The spectrograph has two identical arms each covering half the FOV. Four interchangeable grisms allow spectroscopy with R=4,000 to R=15,000, from 370 – 935 nm.
The Fibre-Optic Broadband Spectrograph (FOBOS) is a facility-class multi-object spectrograph currently being designed, and to be deployed to the Keck II telescope. FOBOS is able to simultaneously observe 1729-objects across a 20′ field of view, with 30% instrument throughput from 0.31-1.0 µm and a spectral resolution of R<3500 delivered by three, bench-mounted 4-channel spectrographs. The FOBOS focal plane will be configured using 1729 ‘Starbug’ robots, which are vacuum-adhered piezo actuators that ‘walk’ across the field plate to position fibres. Using Starbugs to position fibres allows fast configuration and flexibility in payloads, with a mixture of Single Fibre, IFUs, and Imaging Bundles (used for guiding) capable of being rapidly positioned across the field. The FOBOS team have recently passed their conceptual design review. The FOBOS positioner design builds on the experience gained from the TAIPAN instrument, which used 150 Starbugs and demonstrated their viability as a science instrument. In this paper we detail the conceptual design of the FOBOS focal positioner system. This includes details of the Starbug design, optomechanics, and optical designs that allow the focal plane positioner to operate. The FOBOS focal positioner design builds on the experience gained from TAIPAN, a prototype instrument built to demonstrate the Starbugs technology
The 4m DAG telescope is under construction at East Anatolia Observatory in Turkey. DIRAC, the “DAG InfraRed Adaptive optics Camera”, is one of the facility instruments. This paper describes the design of the camera to meet the performance specifications. Adaptive and auxiliary optics relay the telescope F/14 input 1:1 into DIRAC. The camera has an all refractive design for the wavelength range 0.9 - 2.4 micron. Lenses reimage the telescope focal plane 33 x 33 as (9 x 9 mm) on a 1k x 1k focal plane array. With magnification of 2x, the plate scale on the detector is 33 mas/pixel. There are 4 standard filters (Y, J, H, K) and 4 narrowband continuum filters. A 12 position filter wheel allows installation of 2 extra customer filters for specific needs; the filter wheel also deploys a pupil viewer lens. Optical tolerancing is carried out to deliver the required image quality at polychromatic Strehl ratio of 90% with focus compensator. This reveals some challenges in the precision assembly of optics for cryogenic environments. We require cells capable of maintaining precision alignment and keeping lenses stress free. The goal is achieved by a combination of flexures with special bonding epoxy matching closely the CTE of the lens cells and crystalline materials. The camera design is very compact with object to image distance <220 mm and lens diameters <25 mm. A standalone cryostat is LN2 cooled for vibration free operation with the bench mounted adaptive optics module (TROIA) and coronagraph (PLACID) at the Nasmyth focus of the DAG telescope.
The Many Instrument Fiber System (MANIFEST) is a facility fiber system for the Giant Magellan Telescope (GMT). MANIFEST will be capable of feeding current and upcoming GMT instruments light from the telescopes full 20-arcmin field of view. The MANIFEST concept uses “Starbugs” – self-motile fiber heads deployed on a glass plate. MANIFEST will enhance the capabilities of different optical and near-infrared spectrographs at the GMT by feeding fibres and providing simultaneous observations. We have so far developed 15 science cases for MANIFEST which are listed under five broad science themes. Many science cases from galactic surveys, nearby galaxy surveys, intergalactic medium tomography, and spatially resolved studies of distant universe are of interest. These science cases drive the instrument requirements, modes of observations, and operation conditions for MANIFEST. Defined from the science cases, MANIFEST offers nine different modes of observations including high multiplexing, multiple and high sensitivity integral-field spectroscopy, polarimetry, and near-infrared spectroscopy. We discuss in this paper the latest developments of GMT/MANIFEST.
MAVIS is the world’s first facility-grade visible MCAO instrument, currently under development for the VLT. The AO system will feed an imager and an integral field spectrograph, with 50% sky coverage at the Galactic pole. MAVIS has unique angular resolution and sensitivity at visible wavelengths, and is highly complementary to both JWST and ELTs. We describe both instruments in detail and the broad range of science cases enabled by them. The imager will be diffraction-limited in V, with 7.36 mas per pixel covering a 30” FOV. A set of at least 7 broad-band and 15 narrow-band filters will provide imaging from u to z. The spectrograph uses an advanced image slicer with a selectable spatial sampling of 25 or 50 mas to provide integral field spectroscopy over a FOV of 2.5”x3.6”, or 5”x7.2”. The spectrograph has two identical arms each covering half the FOV. Four interchangeable grisms allow spectroscopy with R=5,000 to R=15,000, from 380-950 nm.
The TAIPAN instrument is installed on the UK Schmidt Telescope and has undergone 5 years of commissioning and verification. It utilizes the Starbug fibre positioning technology and is a proof-of-concept design for future Starbug-based instrumentation. The installation and commissioning of this new technology has provided opportunities to understand the Starbugs in detail. Science verification began in 2021 and has demonstrated the sub-10 minute configuration time, efficiency of small field ‘tweaks’ to correct for atmospheric refraction, and positioning accuracy of the Starbugs. Lessons learned from the commissioning of TAIPAN will directly impact future projects in which the Starbug technology is proposed, such as MANIFEST and FOBOS.
MANIFEST is a multi-object fibre positioner for the Giant Magellan Telescope that uses ‘Starbug’ robots to accurately position fibre units across the telescope’s focal plane. MANIFEST, when coupled to the telescope’s planned seeing-limited instruments, GMACS and GCLEF, offers access to: larger fields of view; higher multiplex gains; versatile focal plane reformatting of the focal plane via multiple integral-field-units; increased spectral resolution using image-slicers; the capability for simultaneous observations with multiple instruments; the possibility of a gravity-invariant spectrograph mounting; the potential for OH suppression via fiber systems in the near-infrared; and the versatility of adding new instruments in the future. We have now completed the pre-concept phase for MANIFEST. This phase has focused on developing the science case and requirements, further developing high risk aspects of the instrument design, designing the opto-mechanical interfaces to the GMACS and GCLEF instruments, and detailing the interfaces to the GMT.
Starbugs are robotic devices that have the capability to simultaneously position many optical fibers, over the telescope’s focal plane to carry-out efficient spectroscopic surveys. The conceptual design of FOBOS, the Fiber-Optic Broadband Optical Spectrograph, deploys Starbugs at the Keck II focal plane to enable high-multiplex, deep spectroscopic follow-up of upcoming deep-imaging surveys. FOBOS requires configured fields of many-hundreds of targets (significantly more than TAIPAN and MANIFEST instruments) in a few minutes, consistent with typical detector readout times. FOBOS also requires the inclusion of different optical payloads, like integral field-units, calibration bundles, coherent imaging bundles and perhaps wavefront sensors. Therefore, with these new challenges, it is important to optimize the target allocation and routing algorithms for Starbugs that yield the best configuration times and science outcomes for FOBOS. We provide a description of the Starbug parameters required by the FOBOS conceptual design, perform relevant allocation simulations, and discuss their performance.
The TAIAPAN instrument, being developed by the Australian Astronomical Optics (AAO) - Macquarie University, deploys 159 Starbug robots to position optical fibers on a 32 cm glass field plate on the focal plane of the 1.2 m UK-Schmidt telescope. The Starbug Routing algorithm created for the instrument allows the autonomous robots to reach accuracies of 0.5 arcsec of the assigned target. It employs a 3 stage tiered approach to find a collision-free path for Starbugs of increasing complexity and computational cost. For each Starbug a path is attempted using a direct simultaneous movement. If unsuccessful, subsequently more complex (and expensive) methods are tried until a valid path is found or the target is discarded. The system uses a MongoDB database to record and retrieve starbug locations and properties which allow in-situ re-routing to take place as well.
The Starbug technology1 developed by AAO-MQ allows fibre positioners to be built with large multiplexing capabilities. The Starbug robots are positionable individually and in parallel, which results in significant configuration time improvements over what can be achieved by single-arm pick and place robots. Their design allows the Starbugs to carry a complex payload, and their movement mechanism and vacuum adhesion to the instrument's glass field plate at the telescope's focal plane means that they can be used to position fibres on a non-planar surface.
MANIFEST is a multi-object fibre facility for the Giant Magellan Telescope that uses ‘Starbug’ robots to accurately position fibre units across the telescope’s focal plane. MANIFEST, when coupled to the telescope’s planned seeinglimited instruments, offers access to larger fields of view; higher multiplex gains; versatile focal plane reformatting of the focal plane via integral-field-units; image-slicers; and in some cases higher spatial and spectral resolution. The TAIPAN instrument on the UK Schmidt Telescope is now close to science verification which will demonstrate the feasibility of the Starbug concept. We are now moving into the conceptual development phase for MANIFEST, with a focus on developing interfaces for the telescope and for the instruments.
The AAO Starbugs is a multi-functional positioning device used in the TAIPAN instrument currently being commissioned on the UK Schmidt Telescope at Siding Spring Observatory in Australia. TAIPAN is part of a design study for MANIFEST which is a fibre positioning instrument proposed for the Giant Magellan Telescope. The acquisition and guiding system for TAIPAN uses nine standard Starbugs, referred to as Guide Bugs. Each one uses a 7000 core coherent polymer fibre bundle on individual guide stars. This provides an astrometric reference frame for science fibre positioning, telescope guiding, instrument alignment and focus, all of which are invariant to telescope and atmospheric geometric anomalies. Guide Bugs are a technology that will enable improved science results for the TAIPAN instrument. In this paper we outline the design features and provide an update on software development.
The AAO’s TAIPAN instrument is a multi-object fibre positioner and spectrograph installed on the 1.2m UK-Schmidt telescope at Siding Spring Observatory. The positioner, a prototype for the MANIFEST positioner on the Giant Magellan Telescope, uses independently controlled Starbug robots to position a maximum of 300 optical fibres on a 32cm glass field plate (for a 6 degree field of view), to an accuracy of 5 microns (0.3 arcsec). The Starbug technology allows multi-object spectroscopy to be carried out with a minimum of overhead between observations, significantly decreasing field configuration time. Over the next 5 years the TAIPAN instrument will be used for two southern-hemisphere surveys: Taipan, a spectroscopic survey of 1x10^6 galaxies at z<0.3, and FunnelWeb, a stellar survey complete to Gaia G=12.5. In this paper we present an overview of the operational TAIPAN instrument: its design, construction and integration, and discuss the 2017 commissioning campaign and science verification results obtained in early 2018.
MANIFEST is a facility multi-object fibre system for the Giant Magellan Telescope, which uses ‘Starbug’ fibre positioning robots. MANIFEST, when coupled to the telescope’s planned seeing-limited instruments, GMACS, and G-CLEF, offers access to: larger fields of view; higher multiplex gains; versatile reformatting of the focal plane via IFUs; image-slicers; and in some cases higher spatial and spectral resolution. The Prototyping Design Study phase for MANIFEST, nearing completion, has focused on developing a working prototype of a Starbugs system, called TAIPAN, for the UK Schmidt Telescope, which will conduct a stellar and galaxy survey of the Southern sky. The Prototyping Design Study has also included work on the GMT instrument interfaces. In this paper, we outline the instrument design features of TAIPAN, highlight the modifications that will be necessary for the MANIFEST implementation, and provide an update on the MANIFEST/instrument interfaces.
The Australian Astronomical Observatory's TAIPAN instrument deploys 150 Starbug robots to position optical fibres to accuracies of 0.3 arcsec, on a 32 cm glass field plate on the focal plane of the 1.2 m UK-Schmidt telescope. This paper describes the software system developed to control and monitor the Starbugs, with particular emphasis on the automated path-finding algorithms, and the metrology software which keeps track of the position and motion of individual Starbugs as they independently move in a crowded field. The software employs a tiered approach to find a collision-free path for every Starbug, from its current position to its target location. This consists of three path-finding stages of increasing complexity and computational cost. For each Starbug a path is attempted using a simple method. If unsuccessful, subsequently more complex (and expensive) methods are tried until a valid path is found or the target is flagged as unreachable.
TAIPAN will conduct a stellar and galaxy survey of the Southern sky. The TAIPAN positioner is being developed as a prototype for the MANIFEST instrument on the GMT. The design for TAIPAN incorporates 150 optical fibres (with an upgrade path to 300) situated within independently controlled robotic positioners known as Starbugs. Starbugs allow precise parallel positioning of individual fibres, thus significantly reducing instrument configuration time and increasing the amount of observing time. Presented is an engineering overview of the UKST upgrade of the completely new Instrument Spider Assembly utilized to support the Starbug Fibre Positioning Robot and current status of the Starbug itself.
Starbugs are miniature piezoelectric ‘walking’ robots that can be operated in parallel to position many payloads (e.g.
optical fibres) across a telescope’s focal plane. They consist of two concentric piezo-ceramic tubes that walk with micron
step size. In addition to individual optical fibres, Starbugs have moved a payload of 0.75kg at several millimetres per
second. The Australian Astronomical Observatory previously developed prototype devices and tested them in the
laboratory. Now we are optimising the Starbug design for production and deployment in the TAIPAN instrument, which
will be capable of configuring 300 optical fibres over a six degree field-of-view on the UK Schmidt Telescope within a
few minutes. The TAIPAN instrument will demonstrate the technology and capability for MANIFEST (Many Instrument
Fibre-System) proposed for the Giant Magellan Telescope. Design is addressing: connector density and voltage
limitations, mechanical reliability and construction repeatability, field plate residues and scratching, metrology stability,
and facilitation of improved motion in all aspects of the design for later evaluation. Here we present the new design
features of the AAO TAIPAN Starbug.
MANIFEST is a fibre feed system for the Giant Magellan Telescope that, coupled to the seeing-limited instruments
GMACS and G-CLEF, offers qualitative and quantitative gains over each instrument’s native capabilities in terms of
multiplex, field of view, and resolution. The MANIFEST instrument concept is based on a system of semi-autonomous
probes called “Starbugs” that hold and position hundreds of optical fibre IFUs under a glass field plate placed at the
GMT Cassegrain focal plane. The Starbug probes feature co-axial piezoceramic tubes that, via the application of
appropriate AC waveforms, contract or bend, providing a discrete stepping motion. Simultaneous positioning of all
Starbugs is achieved via a closed-loop metrology system.
Starbugs are miniaturised robotic devices that position optical fibres over a telescope’s focal plane in parallel operation
for high multiplex spectroscopic surveys. The key advantage of the Starbug positioning system is its potential to
configure fields of hundreds of targets in a few minutes, consistent with typical detector readout times. Starbugs have
been selected as the positioning technology for the TAIPAN (Transforming Astronomical Imaging surveys through
Polychromatic Analysis of Nebulae) instrument, a prototype for MANIFEST (Many Instrument Fiber System) on the
GMT (Giant Magellan Telescope). TAIPAN consists of a 150-fibre Starbug positioner accessing the 6 degree field-ofview
of the AAO’s UK Schmidt Telescope at Siding Spring Observatory. For TAIPAN, it is important to optimise the
target allocation and routing algorithms to provide the fastest configurations times. We present details of the algorithms
and results of the simulated performance.
TAIPAN is a spectroscopic instrument designed for the UK Schmidt Telescope at the Australian Astronomical Observatory. In addition to undertaking the TAIPAN survey, it will serve as a prototype for the MANIFEST fibre positioner system for the future Giant Magellan Telescope. The design for TAIPAN incorporates up to 300 optical fibres situated within independently-controlled robotic positioners known as Starbugs, allowing precise parallel positioning of every fibre, thus significantly reducing instrument configuration time and increasing observing time. We describe the design of the TAIPAN instrument system, as well as the science that will be accomplished by the TAIPAN survey. We also highlight results from the on-sky tests performed in May 2014 with Starbugs on the UK Schmidt Telescope and briefly introduce the role that Starbugs will play in MANIFEST.
We present an overview of the EAGLE science case, which spans spatially resolved spectroscopy of targets from five
key science areas - ranging from studies of heavily obscured Galactic star clusters, right out to the first galaxies at the
highest redshifts. Here we summarise the requirements adopted for the study and also evaluate the availability of natural
guide stars in example fields, which will impact on the adaptive optics performance and architecture.
We present a report on the current development status of the ALMA Observing Tool, describing how the tool operates as
an integrated environment for proposal and program preparation. The paper also covers the science-oriented graphical
tools for both spatial and spectral setup, their system-oriented equivalents, local oscillator and correlator setup assistants
as well as program validation.
KEYWORDS: Spectroscopy, Sensors, James Webb Space Telescope, Device simulation, Data modeling, Astronomy, Telescopes, Software development, Space telescopes, Image sensors
MIRI, the Mid-InfraRed Instrument, is one of four instruments being built for the James Webb Space Telescope, and is developed jointly between an European Consortium and the US. In this paper we present a software data simulator for one of MIRI's four instruments: the Integral Field Unit (IFU) Medium Resolution Spectrometer (MIRI-MRS), the first mid-infrared IFU spectrograph, and one of the first IFUs to be used in a space mission. To give the MIRI community a preview of the properties of the MIRI-MRS data products before the telescope is operational, the Specsim tool has been developed to model, in software, the operation of the spectrometer. Specsim generates synthetic data frames approximating those which will be taken by the instrument in orbit. The program models astronomical sources and generates detector frames using the predicted and measured optical properties of the telescope and MIRI. These frames can then be used to illustrate and inform a range of operational activities, including data calibration strategies and the development and testing of the data reduction software for the MIRI-MRS. Specsim will serve as a means of communication between the many consortium members by providing a way to easily illustrate the performance of the spectrometer under different circumstances, tolerances of components and design scenarios.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.