Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and
Flash Imprint Lithography (S-FIL ®) is a unique method that has been designed from the beginning to enable precise
overlay for creating multilevel devices. A photocurable low viscosity monomer is dispensed dropwise to meet the
pattern density requirements of the device, thus enabling imprint patterning with a uniform residual layer across a field
and across entire wafers. Further, S-FIL provides sub-100 nm feature resolution without the significant expense of
multi-element, high quality projection optics or advanced illumination sources. However, since the technology is 1X, it
is critical to address the infrastructure associated with the fabrication of templates.
For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x
templates with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial
variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing
these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing
technology for the sub 32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using
Samsung's current flash memory production device design. The fabrication of the template is discussed and the
resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting
results are described in terms of CD uniformity, etch results, and overlay.
The Step and Flash Imprint Lithography (S-FILTM) process is a step and repeat nano-imprint lithography (NIL) technique based on UV curable low viscosity liquids.1,2,3Investigation by this group and others has shown that the resolution of replication by imprint lithography is limited only by the size of the structures that can be created on the template (mold). S-FIL uses field-to-field drop dispensing of UV curable liquids for step and repeat patterning. This approach allows for micro and nano-fabrication of devices with widely varying pattern densities and complicated structures. Wire grid polarizers and micro lenses are two examples for optical components that can be formed using SFIL technology. Step and Flash Imprint Lithography Reverse (S-FIL/R) tone has been used to form resist patterns for a number of different device types 1,4,6. The authors have employed S-FIL/R and dry develop techniques to form resist patterns with 100 nm period useful for the fabrication of wire grid polarizers. S-FIL/R has a number of advantages over interference lithography techniques for the fabrication of sub 200 nm period grating structures including but no limited to pattern repeatability, vibration insensitivity, high aspect ratio feature formation, greater extendibility and high resolution. The authors have devised imprint and dry etching processes for resist and substrate patterning to form Al based wire grid polarizers with 100 nm pitch. The fabrication processes and resulting devises will be described. While S-FIL is useful for in the formation of resist patterned wafers, it is also capable of forming devices by functional material patterning. Polymer micro lenses are a good examples of functional material devices useful for a number of
applications including CMOS and CCD cameras. The fact that lens geometry is defined by the template and requires no post imprint processing provides a strong advantage over current lens formation approaches. Recent results and the state of current micro lens fabrication by S-FIL is described.
The Step and Flash Imprint Lithography (S-FILTM) process is a step and repeat nano-imprint lithography (NIL) technique based on UV curable low viscosity liquids. Generally nano-imprint lithography (NIL) is a negative acting process which makes an exact replica of the imprint mold and is subsequently dry developed to reveal the underlying substrate material. The authors have demonstrated a novel imprint process, which reverses the tone of the imprint and enables dry develop on nonflat wafers with good critical dimension control and resist layer thickness. This positive acting NIL process termed SFIL/RTM (reverse tone S-FIL), enables nano-imprinting over intrinsic substrate topology of the type commonly found on single side polished substrates. This paper describes the SFIL/R process and the results of pattern transfer on single side polished silicon wafers.
KEYWORDS: Etching, Polymerization, Molecules, Monte Carlo methods, Finite element methods, Lithography, Ultraviolet radiation, Molecular interactions, Scanning electron microscopy, Optical lithography
Step and Flash Imprint Lithography (SFIL) is a revolutionary next generation lithography option that has become increasingly attractive in recent years. Elimination of the costly optics of current step and scan imaging tools makes SFIL a serious candidate for large-scale commercial patterning of critical dimensions below ~50 nm. This work focuses on the kinetics of the UV curing of the liquid etch barrier and the resulting densification/contraction of the etch barrier as it solidifies during this step. Previous experimental work in our group has measured the bulk densification of several etch barrier formulations, typically about 9 % (v/v). It remains unknown, however, how much etch barrier contraction occurs during the formation of nano-scale features. Furthermore, it is of interest to examine how changes in monomer pendant group size impact imprinted feature profiles.
This work provides answers to these questions through a combination of modeling and experimental efforts. Densification due to the photopolymerization reaction and the resulting shift from Van der Waals’ to covalent interactions is modeled using Monte-Carlo techniques. The model allows for determination of extent of reaction, degree of polymerization, and local density changes as a function of the etch barrier formulation and the interaction energies between molecules (including the quartz template). Experimental efforts focus on a new technique to examine trench profiles in the quartz template using TEM characterization. Additionally, SEM images of imprinted images from various etch barrier formulations were examined to determine local contraction of the etch barrier. Over a large range of etch barrier formulations, which range from 10 - 20 % volumetric contraction as bulk materials, it was found that dense 100 nm lines printed approximately the same size and shape.
The Step and Flash Imprint Lithography (S-FILTM) process is a step and repeat nano-replication technique based on UV
curable low viscosity liquids. Molecular Imprints, Inc. (MII) develops commercial tools that practice the S-FIL process.
This talk will present the imprint materials that have been developed to specifically address the issue of process life and
defects.
The S-FIL process involves field-to-field dispensing of low viscosity (<5 cps) UV cross-linkable monomer mixtures.
The low viscosity liquid leads to important advantages that include:
• Insensitivity to pattern density variations
• Improved template life due to a lubricated template-wafer interface avoids “hard contact” between template and
wafer
• Possibility for lubricated (in-situ) high-resolution alignment corrections prior to UV exposure
The materials that are optimal for use in the S-FIL process need to possess optimal wetting characteristics, low
evaporation, no phase separation, excellent polymer mechanical properties to avoid cohesive failure in the cured material,
low adhesion to the template, and high adhesion to the underlying substrate.
Over 300 formulations of acrylate based monomer mixtures were developed and studied. The imprint materials were
deemed satisfactory based on the process of surviving imprinting more than 1500 imprints without the imprints
developing systematic or repeating defects. For the purpose of these process studies, printing of sub-100 nm pillars and
contacts is used since they represent the two extreme cases of patterning challenge: pillars are most likely to lead to
cohesive failure in the material; and contacts are most likely to lead to mechanical failure of the template structures.
The escalating cost for Next Generation Lithography (NGL) tools is driven in part by the need for complex sources and optics. The cost for a single NGL tool could exceed $50M in the next few years, a prohibitive number for many companies. As a result, several researchers are looking at low cost alternative methods for printing sub-100 nm features. In the mid-1990s, several resarech groups started investigating different methods for imprinting small features. Many of these methods, although very effective at printing small features across an entire wafer, are limited in their ability to do precise overlay. In 1999, Willson and Sreenivasan discovered that imprinting could be done at low pressures and at room temperatures by using low viscosity UV curable monomers. The technology is typically referred to as Step and Flash Imprint Lithography. The use of a quartz template enabled the photocuring process to occur and also opened up the potential for optical alignment of teh wafer and template. This paper traces the development of nanoimprint lithography and addresses the issues that must be solved if this type of technology is to be applied to high-density silicon integrated circuitry.
Recent work on Step and Flash Imprint Lithography (SFIL) has been focused on process and materials fundamentals and demonstration of resolution capability. Etch transfer rpocesses have been developed that are capable of transferring imprinted images though 150 nm of residual etch barrier, yielding sub 50 nm lines with aspect ratios greater than 8:1. A model has been developed for the photoinitiated, free radical curing of the acrylate etch barrier materials that have been used in the SFIL process. This model includes the effects of oxygen transport on the kinetics of the reaction and yields a deeper understanding of the importance of oxygen inhibition, and the resulting impact of that process on throughput and defect generation. This understanding has motivated investigation of etch barrier materials such as vinyl ethers that are cured by a cationic mechanism, which does not exhibit these same effects. Initial work on statistical defect analysis has is reported and it does not reveal pathological trends.
Step and Flash Imprint Lithography (SFIL) is an alternative lithography technique that enables patterning of sub-100 nm features at a cost that has the potential to be substantially lower than either conventional projection lithography or proposed next generation lithography techniques. SFIL is a molding process that transfers the topography of a rigid transparent template using a low-viscosity, UV-curable organosilicon solution at room temperature and with minimal applied pressure. Employing SFIL technology we have successfully patterned areas of high and low density, semi-dense and isolated lines down to 20 nm, and demonstrated the capability of layer-to-layer alignment. We have also confirmed the use of SFIL to produce functional optical devices including a micropolarizer array consisting of orthogonal 100 nm titanium lines and spaces fabricated using a metal lift-off process. This paper presents a demonstration of the SFIL technique for the patterning of the gate level in a functional MOSFET device.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.