KEYWORDS: Data modeling, Magnetic resonance imaging, Education and training, Resection, Visual process modeling, Tumors, Modeling, 3D mask effects, Medical imaging, Machine learning
In this work, we aim to predict the survival time (ST) of glioblastoma (GBM) patients undergoing different treatments based on preoperative magnetic resonance (MR) scans. The personalized and precise treatment planning can be achieved by comparing the ST of different treatments. It is well established that both the current status of the patient (as represented by the MR scans) and the choice of treatment are the cause of ST. While previous related MR-based glioblastoma ST studies have focused only on the direct mapping of MR scans to ST, they have not included the underlying causal relationship between treatments and ST. To address this limitation, we propose a treatment-conditioned regression model for glioblastoma ST that incorporates treatment information in addition to MR scans. Our approach allows us to effectively utilize the data from all of the treatments in a unified manner, rather than having to train separate models for each of the treatments. Furthermore, treatment can be effectively injected into each convolutional layer through the adaptive instance normalization we employ. We evaluate our framework on the BraTS20 ST prediction task. Three treatment options are considered: Gross Total Resection (GTR), Subtotal Resection (STR), and no resection. The evaluation results demonstrate the effectiveness of injecting the treatment for estimating GBM survival.
Medical Imaging and Data Resource Center (MIDRC) has been built to support AI-based research in response to the COVID-19 pandemic. One of the main goals of MIDRC is to make data collected in the repository ready for AI analysis. Due to data heterogeneity, there is a need to standardize data and make data-mining easier. Our study aims to stratify imaging data according to underlying anatomy using open-source image processing tools. The experiments were performed using Google Colaboratory on computed tomography (CT) imaging data available from the MIDRC. We adopted the existing open-source tools to process CT series (N=389) to define the image sub-volumes according to body part classification, and additionally identified series slices containing specific anatomic landmarks. Cases with automatically identified chest regions (N=369) were then processed to automatically segment the lungs. In order to assess the accuracy of segmentation, we performed outlier analysis using 3D shape radiomics features extracted from the left and right lungs. Standardized DICOM objects were created to store the resulting segmentations, regions, landmarks and radiomics features. We demonstrated that the MIDRC chest CT collections can be enriched using open-source analysis tools and that data available in MIDRC can be further used to evaluate the robustness of publicly available tools.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.