The Laser Guide Star Facility (LGSF) is responsible for generating the artificial laser guide stars required by the TMT Laser Guide Star (LGS) AO systems. The LGSF uses multiple sodium lasers to generate and project several LGS asterisms from a laser launch telescope located behind the TMT secondary mirror. The LGSF includes 3 main subsystems: (1) the laser system, (2) the beam transfer optics (BTO) system, (3) the associated laser safety system. At present, the LGSF is in the preliminary design phase. During this phase, the laser launch telescope trade study, Beam transfer optical path trade study are compared carefully, and some critical components prototypes have been carried out to verify the requirements, such as the polarization status control and test, the Fast Steer Mirror (FSM) prototype test.
In order to test the working status of adaptive optics systems, it is necessary to design a disturbance signal module. Disturbance signal module based on DDS (Direct Digital frequency Synthesis) is used to generate single-frequency disturbance signal to test the working conditions of deformable mirror and adaptive optics systems. But DDS is a periodic sampling sequence and will inevitably lead to the introduction of periodic noise which makes the disturbance signal scattering. This paper uses two methods to reduce the scattering of the single-frequency signal generated by DDS technology. The first method is the compression ROM table. In the case of the same ROM capacity, it is equivalent to extend the compressed ROM table with 256 points to ROM table with 1024 points. In this process, Oversampling is introduced to improve spectral purity to reduce the scattering of the single-frequency signal. The second method is the random phase jitter technology. It introduces m sequence as DDS sampling output random phase jitter unit. The purpose is to generate some random number added at the end of the phase accumulator. As a result, the output does not always push back than ideal, but randomly in advance, thus breaking its periodicity. This method changes the original uniform look-up sampling into a random non-uniform look-up sampling, making DDS output spectrum white. It can also improve spectral purity of the DDS output, thereby reducing the scatting of the single-frequency signal generated by DDS technology.
KEYWORDS: Signal generators, Adaptive optics, Signal processing, Interference (communication), Field programmable gate arrays, Oscillators, Data storage, Clocks, Materials science, Optoelectronics
In order to test the working state of adaptive optics system, it is necessary to design an online sweep-frequency circuit module to test the frequency response of the adaptive system. Sweep-frequency signal generator based on Direct Digital frequency Synthesis (DDS) is one of the core components. But the classic DDS technology also has some drawbacks: the truncation error of phase, the truncation error of magnitude (caused by memory FWL) and high occupancy of ROM. These are also the optimization directions in this paper. This paper presents a FPGA-based DDS sweep-frequency signal generator suitable in adaptive optics. It has a low occupancy rate with ROM. And in the case of low-ROM, the paper reduces the noise generated by the truncation error of phase and the truncation error of magnitude of DDS sweepfrequency signal generator by method of linear interpolation. The results show that, when the reference frequency is 100 MHz, the frequency resolution can be as low as 0.025 Hz. It only takes up 0.5 KB ROM with the ROM compression ratio of 64:1 in the optimized scheme in the paper and has higher precision due to the method of linear interpolation than the unoptimized scheme, which can meet the engineering needs. Compared with other schemes, the scheme in the paper improves signal accuracy in the case of reducing the truncation error of phase, the truncation error of magnitude and the occupancy rate with ROM, but only adds a multiplication and division circuit, which is a practical solution.
This paper describes High Voltage Driver (HVD) development for Piezoelectric Fast Steering Mirror (PFSM). Piezoelectric actuator's highly capacitive nature and its influence on high voltage driver are discussed. Since the PFSM tends toward higher speed and larger angle, a multi-paralleling power booster output stage linear high voltage amplifier is described that can output significantly higher current than single output stage linear power amplifier. Test results are presented for a fast high voltage driver that can drive a 300mm diameter PFSM (2.5μF piezoelectric actuator) at 100Hz 1000Vpp, also at 5000Hz 20Vpp.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.