The X-ray Integral Field Unit (X-IFU) instrument is the high-resolution X-ray spectrometer of the ESA Athena X-ray Observatory. X-IFU will deliver spectra from 0.2 to 12 keV with a spectral resolution requirement of 4 eV (3 eV design goal) up to 7 keV from 5" pixels, with a hexagonal field of view of 4' equivalent diameter. The main sensor array and its associated detection chain is one of the major functional chains of the X-IFU instrument, and is the main contributor to XIFU performance. CNES (Centre National d’Études Spatiales) is the prime contractor for the X-IFU and leads the project development and procurement aspects within the X-IFU Consortium; additional major partners of the main detection chain are NASA-GFSC, SRON, VTT, APC, NIST, IRAP, and IAP. The detection chain design for X-IFU has evolved in the past few years in order to secure the performances and development costs, in the frame of the New Athena mission. New TES pixels are implemented with slower time constant and a reduced sensitivity to magnetic field. The slower time constant directly allows an increase of the MUX factor and a reduction of the number of channels, together with the decrease of the number of proximity electronics boxes, or warm front end electronics (WFEE). The cryostat outer vessel temperature is now a 50 K thermal interface, cooled passively thanks to L-shaped thermal shield (L-grooves). This has a direct impact of the cryo-harness between the 4 K core interface and the WFEE interface. In the past years, we have performed early demonstration on the critical components in order to secure the detection chain design and performances. This paper presents the progress done on early demonstrations (warm electronics, cryo-harness breadboarding,...), while providing an update to the detection-chain design description.
CNES (French Space Agency) is in charge of the development of the X-IFU instrument for Athena. The main sensor array detection chain sub-system of the X-IFU instrument is one of the major sub-subsystem of the instrument, as the main contributor to the performance. This sub-system involves major partners of the X-IFU instrument, e.g GFSC, SRON, VTT, APC, and IRAP. The purpose of this paper is to present the baseline of the definition of the X-IFU detection chain in the frame at end of phase A/beginning of phase B. The readout is based on Time Domain Multiplexing (TDM). There are strong design issues which couple the different sub-components of the detection chain (the main sensor array, the cold electronics stages, and the warm electronics). The detection chain environment (thermal, mechanical and EMI/EMC environment) also requires a transverse analysis. This paper focuses on those aspects while providing design description of the sub-components of the detection chain.
We are developing Frequency Domain Multiplexing (FDM) read-out of Transition-Edge Sensors (TESs) for the X-ray Integral Field Unit (X-IFU) on board of the future European X-Ray observatory Athena. The X-IFU Focal-Plane Assembly consists of a $sim$ 3000-pixel array, read out by SQUID-based FDM. The multiplexing readout scheme is a critical technology for the X-IFU instrument because of the cooling and electronic power limits for the satellite. In this contribution, we report on the development of FDM readout technology and on the performance of TESs array under an AC bias at MHz frequencies.
The X-ray Integral Field Unit (X-IFU) is an imaging microcalorimeter being developed for ESA's Athena X-ray observatory to providing high spectral resolution imaging between 0.2-12 keV, with moderate count-rate capability and a large field-of-view. The X-IFU focal plane assembly (FPA) will contain the instrument's large-format transition edge sensor (TES) microcalorimeter array and its superconducting readout electronics, plus a second TES detector, located behind the main sensor array, is used to detect high-energy cosmic rays and secondary particles passing through the sensor array and enable the rejection of false events that they generate in the sensor array's event list. A Kevlar thermal suspension is used to isolate the detectors at 55 mK from the 2 K environment of the X-IFU instrument cryostat's cold stage, while three layers of shielding are used to allow the detector's to achieve their low-noise performance in the expected on-ground and in-flight electromagnetic and microvibration environment. This paper will describe the preliminary design concept of the X-IFU focal plane assembly and its critical technology building blocks.
We are developing the frequency domain multiplexing (FDM) read-out of transition-edge sensor (TES) microcalorimeters for the X-ray Integral Field Unit (X-IFU) instrument on board of the future European X-Ray observatory Athena. The X-IFU instrument consists of an array of $\sim$3840 TESs with a high quantum efficiency (>90 % at 7 keV) and spectral resolution $\Delta E$=2.5 eV @ 7 keV ($E/\DeltaE\sim$2800).
FDM is the baseline readout system for the X-IFU instrument. In FDM, TESs are coupled to a passive LC filter and biased with alternating current (AC bias) at MHz frequencies. Each resonator should be separated beyond their detector thermal response (< 10 kHz) to avoid crosstalk between neighboring resonators. To satisfy the requirement of the X-IFU, a multiplexing factor of 40 pixels/channel in a frequency range from 1 to 5 MHz required.
Using high-quality factor LC filters and room temperature electronics developed at SRON and low-noise two-stage SQUID amplifiers provided by VTT, we have recently demonstrated good performance with the FDM readout of Mo/Au TES calorimeters with Au/Bi absorbers. We have achieved a performance requested for the demonstration model (DM) with the single pixel AC bias mode. We have also demonstrated 6-pixel multiplexing with an average energy resolution of 3.4 eV, which is currently limited by non-fundamental issues related to FDM readout in our current lab setup. In parallel to technology developments, we are also constructing a set-up which can be readout 2x40 pixels as the precursor of the DM.
In this paper we report on the concept of the focal plane assembly, their requirements, detector performance under FDM scheme, recent results from pre-demonstration model setup and future prospect.
In this paper we present a first assessment of the impact of various forms of instrumental crosstalk on the science performance of the X-ray Integral Field Unit (X-IFU) on the Athena X-ray mission. This assessment is made using the SIXTE end-to-end simulator in the context of one of the more technically challenging science cases for the XIFU instrument. Crosstalk considerations may influence or drive various aspects of the design of the array of high-countrate Transition Edge Sensor (TES) detectors and its Frequency Domain Multiplexed (FDM) readout architecture.
Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes.
Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory.
This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed.
We are developing the frequency domain multiplexing (FDM) read-out of transition-edge sensor (TES) microcalorimeters for the X-ray Integral Field Unit (X-IFU) instrument on board of the future European X-Ray observatory Athena. The X-IFU instrument consists of an array of ~3840 TESs with a high quantum efficiency (>90 %) and spectral resolution ΔE=2.5 eV @ 7 keV (E/ ΔE ~2800). FDM is currently the baseline readout system for the X-IFU instrument. Using high quality factor LC filters and room temperature electronics developed at SRON and low-noise two stage SQUID amplifiers provided by VTT, we have recently demonstrated good performance with the FDM readout of Mo/Au TES calorimeters with Au/Bi absorbers. An integrated noise equivalent power resolution of about 2.0 eV at 1.7 MHz has been demonstrated with a pixel from a new TES array from NASA/Goddard (GSFC-A2). We have achieved X-ray energy resolutions ~2.5 eV at AC bias frequency at 1.7 MHz in the single pixel read-out. We have also demonstrated for the first time an X-ray energy resolution around 3.0 eV in a 6 pixel FDM read-out with TES array (GSFC-A1). In this paper we report on the single pixel performance of these microcalorimeters under MHz AC bias, and further results of the performance of these pixels under FDM.
This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a ~ 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including straylight from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.
We are developing transition-edge sensor (TES)-based microcalorimeters for the X-ray Integral Field Unit (XIFU) of the future European X-Ray Observatory Athena. The microcalorimeters are based on TiAu TESs coupled to 250μm squared, AuBi absorbers. We designed and fabricated devices with different contact geometries between the absorber and the TES to optimise the detector performance and with different wiring topology to mitigate the self-magnetic field. The design is tailored to optimise the performance under Frequency Domain Multiplexing. In this paper we review the main design feature of the pixels array and we report on the performance of the 18 channels, 2-5MHz frequency domain multiplexer that will be used to characterised the detector array.
The EURECA (EURopean-JapanEse Calorimeter Array) project aims to demonstrate the science performance and
technological readiness of an imaging X-ray spectrometer based on a micro-calorimeter array for application in future
X-ray astronomy missions, like Constellation-X and XEUS. The prototype instrument consists of a 5 × 5 pixel array of
TES-based micro-calorimeters read out by by two SQUID-amplifier channels using frequency-domain-multiplexing
(FDM). The SQUID-amplifiers are linearized by digital base-band feedback. The detector array is cooled in a cryogenfree
cryostat consisting of a pulse tube cooler and a two stage ADR. A European-Japanese consortium designs,
fabricates, and tests this prototype instrument. This paper describes the instrument concept, and shows the design and
status of the various sub-units, like the TES detector array, LC-filters, SQUID-amplifiers, AC-bias sources, digital
electronics, etc.
Initial tests of the system at the PTB beam line of the BESSY synchrotron showed stable performance and an X-ray
energy resolution of 1.58 eV at 250 eV and 2.5 eV @ 5.9 keV for the read-out of one TES-pixel only. Next step is
deployment of FDM to read-out the full array. Full performance demonstration is expected mid 2009.
EURECA (EURopean-JapanEse Calorimeter Array) comprises a 5 x 5 pixel imaging TES-based micro-calorimeter
array read-out by SQUID-based frequency-domain-multiplexed electronics and cooled down by an adiabatic
demagnetization refrigerator. A European-Japanese consortium designs, fabricates, and tests this prototype instrument
with the aim to show within about 2 years technology readiness of a TES-based X-ray imaging micro-calorimeter array
in anticipation of future X-ray astronomy missions, like XEUS (ESA), Constellation-X (NASA), NEXT (JAXA), DIOS
(JAXA), ESTREMO (ASI), and NEW (Dutch-multinational). This paper describes the instrument concept, and shows
the design of the various sub-units, like the TES detector array, LC-filters, SQUID-amplifiers, flux-locked-loop
electronics, AC-bias sources, etc.
Piet de Korte, John van Baar, Norman Baars, Frank Bakker, Wouter Bergmann Tiest, Marcel Bruijn, Alexander Germeau, Henk Hoevers, Mikko Kiviranta, Eric Krouwer, Jan van der Kuur, Marco Lubbers, Wim Mels, Marcel Ridder, Heikki Seppae, Remco Wiegerink
A micro-calorimeter array with superconducting transition-edge sensors read out by a SQUID-based frequency-domain multiplexer is under development for the X-ray imaging spectrometer on board ESA’s X-ray Evolving Universe Spectroscopy (XEUS) mission. The XEUS requirements are 2 and 5 eV FWHM energy resolution for 2 and 7 keV X-rays, respectively. An array of 32 x 32 pixels with 250 micron square pixels is envisaged. SRON and MESA+ have developed 5 x 5 imaging micro-calorimeter prototype arrays along a bulk micromachining and a surface micromachining route. The present state of array design and development with emphasis on pixel-to-pixel performance measurements of thermal and I-V characteristics, sensor noise and energy resolution are presented. SRON and VTT are developing frequency-domain multiplexing with SQUID current amplifiers to read out the 32 x 32 array. The concept for the frequency division multiplexing read-out will be presented and its performance characteristics discussed. Recent results of sensor operation under AC-bias (500 kHz) are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.