A space tug vehicle is designed to rendezvous and dock with a space object; make an assessment of its current position, orientation, and operational status; and then either stabilize the object in its current orbit or move the object to a new location with subsequent release. A subset of on-orbit servicing, space tug missions in the geosynchronous belt include stationkeeping of satellites which have lost attitude control and repositioning of satellites. Repositioning of spacecraft may be desirable as a means to rescue satellites launched into incorrect orbits, for the retirement of satellites into “graveyard” orbits, and for on-demand maneuvers that support flexible mission requirements. This paper aims to unify the political, legal, operational, and financial aspects of the space tug concept and highlight the challenges that stand in the way of an operational space tug vehicle. U.S. Space Transportation Policy is reviewed, and a space tug operation is recognized as an enabler of emerging national space transportation requirements. Customary international and United States laws are explored as potential constraining forces on future tug missions. A concept of operations in geosynchronous orbit, including parking orbit selection and approach strategies, is analyzed with emphasis placed on safety and reliability. Potential financing models and the issue of insurance for space tugs are discussed and identified as the principal challenges facing implementation of a space tug system. This paper offers a positive forecast for the future of on-orbit servicing and endorses continued government support for proof-of-concept missions.
KEYWORDS: Global Positioning System, Network centric warfare, Weapons, Free space optics, Warfare, Sensors, Information security, Network security, Internet, Information assurance
Corporate, government and military bodies focus significant resources to develop sophisticated and capable information-based systems. The concept of people and resources connected by a robust network capable of extremely high rates of information exchange is very attractive because it allows smaller groups to coordinate together and focus effects from geographically diverse locations. However, there is also a hidden danger that comes with such advanced technology. For example, in the case of the U.S. Military, clearly United States holds a technological advantage over our adversaries and that this advantage is still expanding. This technology gap has resulted in the emergence of potent asymmetrical warfare. All too often in science fiction movies, we see a small group of humans defeat a technologically superior alien race by striking at a hidden weakness that renders all of their advanced weapons as useless, as a result of pervasive connectivity and interdependence. The analogy holds for any large network-centric enterprise, corporate or governmental. This paper focuses on specific technologies and methods that preempt this Achilles Heal scenario.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.