Standard chemoradiation often enriches drug-resistant tumor cell populations that can lead to recurrent and treatment-refractory disease. Preclinical models of glioblastoma brain tumors, for instance, suggest that the cancer stem cell subpopulation becomes enriched and re-populates the tumor milieu following conventional therapies. Here, we show evidence that photodynamic therapy (PDT) is effective against several patient-derived glioblastoma stem cell cultures. Moreover, sub-lethal PDT results in re-sensitization of cancer stem cell phenotypes with induced drug-resistance to chemotherapy.
Glioblastoma (GBM) has less than one-year survival rate due to local recurrence post treatment or growth of “left-over” residual disease post surgical resection. To personalize treatment strategies and reduce the rate of recurrence, it is important to develop imaging based therapeutic strategies and prediction markers to identify GBM recurrence. Given the role of the vasculature in tumor growth and survival, here we utilize multi-parametric ultrasound and photoacoustic imaging to validate if changes in vascular structure and function could be predictive of treatment response in patient- derived orthotopic Glioblastoma xenograft models.
Patient-derived GBM cell lines were implanted in the brain of Swiss nu/nu mice. After the tumors reached 2-4 mm in diameter, the mice were divided into 4 groups namely – no treatment, surgical resection, therapy and surgical resection with therapy. Photodynamic therapy (PDT), a light based cytotoxic therapy, with photosensitizer Benzoporphyrin derivative (BPD) or FDA approved chemotherapy temozolomide were administered in the mice. Fujifilm VisualSonics LAZR system with a 20 MHz transducer was used to obtain power Doppler (%vascularity in tumors) and photoacoustic oxygen saturation (StO2) maps of the brain tumors at different time points pre and post treatment. The mice were either euthanized for immunofluorescence to validate the imaging markers or longitudinally monitored for tumor volume until moribund.The no-treatment group or the surgery only group did not have significant changes in vascular density or StO2. We observed a statistically significant decrease in StO2 immediately post BPD-PDT (primarily a vascular therapy) but not with temozolomide (a cellular therapy). Furthermore, we also observed that the sustenance of hypoxia or low StO2 in tumors for 24-72 hours can be a predictive biomarker for tumor recurrence. Overall, these results suggest the utility of ultrasound and photoacoustic imaging in monitoring treatment response and developing treatment prediction strategies for glioblastoma.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.