Photon-counting receivers are deployed on the NASA Ice, Cloud and land Elevation Satellite-2 (ICESat2) Advance Topographic Laser Altimeter System (ATLAS). The ATLAS laser altimeter design has total six ground tracks with three strong and three weak tracks. The strong track has nominally 4 times more laser power than the weak track. The receiver is operated in photon counting mode. There are 16 photon-counting channels for each strong track and 4 photon-counting channels for each weak track. Hamamatsu photomultiplier with a 4x4-array anode was used as photon counting detector. This receiver design has high counting efficiency (>15%) at 532 nm, low dark count rate (<400 counts per second), low jitter (less than 285ps), short dead time (<3 ns), long lifetime under large solar background radiation, radiation harden for space operation, and ruggedized for survives the harsh vibration during the launch. In this paper, we will present the initial on-orbit performance of this photon-counting receiver.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.