Today novel RET solutions are gaining more and more attention from the lithography community that is facing new challenges in attempting to meet the new requirement of the SIA roadmap. Immersion, high NA, polarization, and mask topography, are becoming common place terminology as lithographers continue to explore these areas. Here with, we compare a traditional 6% MoSi based EAPSM reticle and a high transmission solution made of a SiON/Cr film stack. Insights into the manufacturability of high transmission material are provided. Test patterns have been analyzed to determine the overall impact of imaging performance when used with immersion scanners and polarized light. Some wafer results provide reliability of simulations, which are used to make further investigation on polarization and immersion effects.
Today novel RET solutions are gaining more and more attention from the lithography community that is facing new challenges in attempting to meet the new requirement of the SIA roadmap. Immersion, high NA, polarization, and mask topography, are becoming common place terminology as lithographers continue to explore these areas. Here with, we compare a traditional 6% MoSi based EAPSM reticle and a high transmission solution made of a SiON/Cr film stack. Insights into the manufacturability of high transmission material are provided. Test patterns have been analyzed to determine the overall impact of imaging performance when used with immersion scanners and polarized light. Some wafer results provide reliability of simulations, which are used to make further investigation on polarization and immersion effects.
Intensity imbalance between the 0 and π phase features of c:PSM cause gate CD control and edge placement problems. Strategies such as undercut, selective biasing, and combinations of undercut and bias are currently used in production to mitigate these problems. However, there are drawbacks to these strategies such as space CD delta through pitch, gate CD control through defocus, design rule restrictions, and reticle manufacturability. This paper investigates the application of an innovative films-based approach to intensity balancing known as the Transparent Etch Stop Layer (TESL). TESL, in addition to providing a host of reticle quality and manufacturability benefits, also can be tuned to significantly reduce imbalance. Rigorous 3D vector simulations and experimental data compare through pitch and defocus performance of TESL and conventional c:PSM for 65nm design rules.
The lithography prognosticator of the early 1980’s declared the end of optics for sub-0.5μm imaging. However, significant improvements in optics, photoresist and mask technology continued through the mercury lamp lines (436, 405 & 365nm) and into laser bands of 248nm and to 193nm. As each wavelength matured, innovative optical solutions and further improvements in photoresist technology have demonstrated that extending imaging resolution is possible thus further reducing k1. Several authors have recently discussed manufacturing imaging solutions for sub-0.3k1 and the integration challenges. The requirements stated in the ITRS roadmap for current and future technology nodes are very aggressive. Therefore, it is likely that high NA in combination with enhancement techniques will continue further for aggressive imaging solutions. Lithography and more importantly “imaging solutions” are driven by economics. The technology might be extremely innovative and “fun”, however, if it's too expensive it may never see the light of scanner. The authors have investigated and compared the capability of high transmission mask technology and image process integration for the 45nm node. However, the results will be graded in terms of design, mask manufacturability, imaging performance and overall integration within a given process flow.
Repair of etched quartz defects on AAPSM products negatively affect manufacturability in the mask shop. Currently there are few solutions to repair etched quartz defects, two of these include mechanical removal or a combination of topography mapping and FIB milling of the defect. Both of the above methods involve large capital investments specifically for etched quartz repair. The method presented in this study readily repairs etched quartz without the need to purchase additional tools for AAPSM repair.
Photronics' Advanced Materials Program has developed a transparent etch stop layer (TESL) integrated into the binary blank for the purpose of building AAPSM products with a high yield component. This etch stop layer is located under a layer of sputtered SiO2 deposited to 180° for a given lithography wavelength. These blanks can be used for a variety of etched quartz applications including cPSM and CPL.
Photronics has developed software that reads in defect locations from automatic inspection tools and the jobdeck. A "repair" layer is created for the defect file and the plate is then re-exposed on the mask lithography tool. The defects are then etched away using the etch stop to control the phase of the surrounding trench.
The repair method was tested using programmed defect masks from single etched 193nm AAPSM technologies. Inspection, SEM, AIMS and profilometry results will be shown.
Alternating phase shift masks (alt. PSM) are emerging as an attractive resolution enhancement technique. Although alt. PSM is a technique that clearly improves resolution, there are some inherent disadvantages that are induced by the manufacturing process. Intensity imbalance, phase non-uniformity and quartz defects diminish the performance of an alternating PSM. Many of these disadvantages can be a result of imprecise quartz etching. By implementing a transparent etch stop layer, these deficiencies can be minimized. The etch stop layer ensures that all of the quartz is etched and that over-etching will not induce a phase-shift error. This produces improved phase uniformity and eliminates quartz defects. The etch stop layer also has the ability to improve the image intensity balancing by reducing the intensity through the zero degree region. This paper discusses the advantages and manufacturability of alt. PSM using a transparent etch stop layer.
Assist bar Optical Proximity Correction (OPC) has been demonstrated to increase across pitch performance and depth-of-focus of semi-dense to isolated lines. As the sub-resolution assist feature (SRAF) or assist bar's size increases, so does its desired lithographic effect, as well as its undesired printability. In other words, when large assist features are required at isolated pitches, the assist features may print. A frequency-preserving assist bar solution is the most preferred one, but difficult to realize for opaque assist features due to printability. The concept of frequency-preserving Gray Assist Bar OPC has been introduced as a method to extend imaging performance for small features across a wide rage of duty ratios. In this paper, we will present the experimental validation of this concept. The Gray Assist Bar mask was manufactured using a two-level lithography process, and the optical properties have been characterized using a Woollam VUV VASE system. Additional metrology was performed using an AFM (SNP9000) and CD SEM (KLA8250XR). Exposures on a 0.75NA 193nm scanner clearly show the expected effects. The use of the Gray Assist Bar features reduces the through pitch critical dimension (CD) variations significantly and can hence be regarded as an "Optical Proximity Correction". The isofocal inflection point of aerial images is shifted in cases with Gray Assist Bars, resulting in flatter bossung curves and a larger depth of focus (DOF) for the various features through pitch at their target size. This results in larger overlapping process windows. The Gray Assist Bars has also shown a very low printability, even with aggressive off-axis illumination (OAI) settings.
Current commercially available 193nm Embedded Attenuated Phase Shift Mask (EAPSM) blanks are MoSiON-based. In order to obtain the appropriate optical properties of 6% transmission and 180-degree phase shift at 193nm wavelength, these films are built very thin and subsequently have very high transmission at longer wavelengths. Current inspection tools use 364nm as the inspection wavelength; therefore the high transmission of the commercial blanks (>50% at 365nm) causes sensitivity problems in current high-end inspection tools. This problem is only fixed by costly upgrades to the current inspection tools, resulting in much higher mask costs. Photronics, Inc. has developed an alternative film stack that obtains the appropriate optical properties at 193nm (6%T and 180-degree phase shift). This film stack has a relatively low transmission (<15%) at the inspection tool wavelength in comparison to the commercial blanks enabling improved inspection performance with the current tool set. This paper outlines the development of new 193nm EAPSM blanks, the processing of these masks, and the resulting inspection performance in comparison to the commercial EAPSM blanks.
One of the major challenges in alternating aperture phase shift mask (AAPSM) production is the variability of the glass etch rate as a function of exposed area (pattern loading) on the mask. The lack of an endpoint system means that the etch is entirely based on time, and the result is increased variability in the mean etch depth as well as decreased yields against ever tightening phase specifications. If a transmissive etch stop layer were placed underneath an appropriate thickness of glass to obtain a 180-degree phase shift, the result is a forced endpoint at exactly 180 degrees every time. Such a film system also leads to many process advantages over conventional AAPSM processes. This paper discusses the film stack deposition and maskmaking at Photronics, Inc. and details the process advantages of using AAPSM blanks with etch stop layers.
There are several different methods for printing contact holes on wafers using optical lithography. A preferred resolution enhancement technique for improved contact hole lithography performance is the embedded attenuated phase shift mask (EAPSM). The EAPSM comes in many flavors and forms, but the current preferred form is a film transmission of 6 percent and a phase shift of 180 degrees relative to the clear fused silica areas. It is important to note that the phase shift and transmission values for the phase shift mask are at the actinic exposure wavelength of the wafer stepper/scanner. That is the mask is designed to have a transmission of 6 percent and phase shift of 180-degrees at 248nm or 193nm, depending on the wafer stepper. The resulting transmission of the phase shift mask at the inspection tool wavelength of 365nm is much higher, and the phase shift of the 365nm radiation is significantly less than at the shorter actinic wavelength. The gray-scaled aerial images that are collected by the mask inspection tool could vary significantly for the same size 2-D feature in the binary mask, the 248nm EAPSM, and the 193nm EAPSM. This is also compounded by the fact that the inspection tool calibrates the background transmission of the phase shift material as 0 percent transmission and calibrates the transmission of the fused silica as 100 percent transmission. When these gray-scaled images are used in an energy flux algorithm for contact area measurement, they can be potentially different for each of the three types of masks used to print contact holes. This paper explores the issues involved in using an off-actinic aerial image as the basis for the AVI method of contact sizing.
The Chromeless Phase Shift Mask (CLM) approach from ASML MaskTools has been developed as an approach to achieve sub-100nm lithography using currently available stepper technology. The technology uses sub-resolution gray-scaled regions of zero-phase and pi-phase quartz on the mask to produce effective feature widths well below 100nm at the wafer. The features on the mask consist entirely of etched and unetched quartz. No features consist of chrome on the mask. The integration of this type of phase shift mask technology into the photomask-manufacturing environment requires that the mask manufacturer be able to inspect the mask for defects in the quartz. The Defect Sensitivity Monitor (DSM) pattern was used to construct a CLM mask. The mask was inspected using commercially available inspection platforms, and the resulting inspection capability is reported.
Before 157nm optical lithography can be implemented as an effective technology, the performance of VUV thin film materials must be investigated. These materials will have a significant impact on the ultimate system performance. The capability of such films may actually determine whether an optical technology is viable. We have been exploring the optical properties of various fluorides, oxides and nitrides for use at 157nm. We have developed several approaches for solutions to optical coatings, masking and AR applications. These include an alternative version of a chromium absorber film, optical and AR coatings based on Group III metal fluorides.
Constraints of the photomask are beginning to play dominate roles in the advancement of new microlithographic technology. Mask substrate materials are being explored by several groups. In this work, we explore the thin film masking layers themselves and identify potential solutions for binary and phase-shift masking films for use at 157 nm. The chromium based absorbing films used for binary masking are likely to meet the required needs. Modification of the composition will be required. Attenuated phase shift masking films become challenging as few transparent host thin film materials exist at the 157 nm wavelength.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.