World Space Observatory Ultraviolet (WSO-UV) is a major Russian-led international collaboration to develop a large Space-borne 1.7 m Ritchey-Chrétien telescope and instrumentation to study the Universe in the ultraviolet wavelengths. The WSO-UV WUVS spectrograph consists of three channels: two high resolution channels (R=50000) with spectral ranges of 115-176 nm and 174-310 nm, and a low resolution (R=1000) channel with a spectral range of 115-305 nm. Each of the three channels has an almost identical custom detector consisting of a CCD inside a vacuum Enclosure, and drive electronics with associated cables. The main challenges of the WUVS detectors are to achieve high quantum efficiency in the FUV-NUV range, to provide low readout noise (≤3 e- at 50 kHz) and low dark current (≤ 12 e- /pixel/hour), to operate with integral exposures of up to 10 hours, and to provide good photometric accuracy. Teledyne e2v has designed three variants of a custom CCD272-64 sensor with different UV AR coatings, optimised for each WUVS channel. The custom vacuum Enclosure, also designed by Teledyne e2v, prevents contamination and maintains the CCD at the operating temperature of -100oC, while the temperature of the WUVS optical bench is +20oC. STFC RAL Space has developed the Camera Electronics Box (CEB) which houses the CCD drive electronics. Digital correlated double sampling technology provides extremely low readout noise and also enables flexibility to optimise readout noise against pixel frequency for a number of normal and binned pixel readout modes. This paper presents the general trade-offs of the WUVS detector design, methods for extending the service life of the CCD sensors working with low signals in a Space radiation environment, and a summary of the measured and calculated key parameters of the WUVS detectors.
The Soft X-ray Imager instrument on the ESA THESEUS mission will provide high-energy imaging and spectroscopy observations of fast transients, providing significant steps forward in our understanding and characterisation of the early Universe. The instrument will utilise high performance microchannel plate optics (MPOs) and some of the first X-ray optimised CMOS devices to be used for space applications. The instrument team are currently developing a flight-like prototype instrument in order to enable full and appropriate characterisation of the instrument, and in particular the performance of candidate detectors. Here we present early results from the focal plane requirement study programme (including performance modelling and trade-off studies).
A pair of radiation hardened high-voltage mixed signal Application Specific Integrated Circuits (ASICs) are described that provide the biasing and clocking functions required to drive large format CCDs used for space-borne cameras and focal planes. The use of these ASICs allows the CCD drive electronics to be realised in a compact and energy efficient manner saving volume, mass, and power when compared with traditional space-qualified discrete implementations. The STAR ASIC provides 24 independent voltage outputs with a 32.736V range at 10 bit resolution and with <100μV noise. Each voltage output provides a drive current of up to +/-20mA and is stable for capacitive loads of up to 10μF. An on-board telemetry system featuring a 12-bit ADC and programmable gain buffer allows internal monitoring of the output voltages plus up to 32 single ended and 4 differential external voltages, such as from PRT bridge circuits for temperature monitoring. A simple SPI serial interface provides control and telemetry read back, while all required voltages and currents are generated from internal bandgap circuits. The COMET ASIC provides 6 fully independent clock buffering channels each with individually programmable rising/falling current drive and high/low voltage levels. Output voltage levels are controlled with integrated fast response regulators that operate over a 16.368V range without the need for external decoupling capacitors. Clock drive currents can be adjusted for the load capacitance and output slew rate required over a 409.6mA range, with edge speeds <15ns achievable for small loads. Setup and control of the ASIC is also via an SPI interface with integrated safety features to ensure correct sequencing of channel operation and to prevent reverse biasing of the driver programmable voltage supplies. The COMET ASIC also features an under-voltage lock out circuit to safeguard the chip in the event of unexpected power loss. All necessary biases are generated internally and only supply decoupling, a single filtering capacitor, and a resistive divider are required to operate the device. Both devices have been designed in a commercial 0.35μm 50V tolerant HV CMOS technology using Triple Module Redundancy (TMR) and established layout techniques to harden against Total Ionising Dose (TID), Single Event Upset (SEU), and Single Event Latch-up (SEL) radiation effects. The latch-up detection circuits often needed for space electronics are therefore not required for either ASIC. Details of the architectures and circuit implementations of both ASICs will be presented. Test results from manufactured devices will be shown under representative load conditions.
Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television.
In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO’s remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.
The CCD remains the preeminent visible and ultra-violet wavelength image sensor in space-science, Earth and planetary remote sensing. However, the design of space-qualified CCD readout electronics is a significant challenge with requirements for low-volume, low-mass, low-power, high-reliability and sufficient tolerance to the effects of space radiation.
Digital correlated double sampling (DCDS) is an emerging technology for CCD imaging systems in space-based applications. DCDS technology not only provides the low readout noise electronics required by many applications but also offers a range of flexible readout modes that allows the readout noise and pixel frequency to be dynamically adjusted even in operation.
World Space Observatory Ultraviolet (WSO-UV) is a major international collaboration led by Russia and will study the universe at ultraviolet wavelengths between 115 nm and 320 nm. The WSO Ultraviolet Spectrograph (WUVS) subsystem is led by a consortium of Russian institutes and consists of three spectrographs.
RAL Space is contracted by e2v technologies Ltd to provide the CCD readout electronics for each of the three WUVS channels. The programme involves the design, manufacturing, assembly and testing of each Camera Electronics Box (CEB), its associated Interconnection Module (ICM), Electrical Ground Support Equipment (EGSE) and harness.
An overview of the programme will be presented, from the initial design phase culminating in the development of an Engineering Model (EM) through qualification whereby an Engineering Qualification Model (EQM) will undergo environmental testing to characterize the performance of the CEB against the space environment, to the delivery of the Flight Models (FMs). The paper will discuss the challenges faced managing a large, dynamic project. This includes managing significant changes in fundamental requirements mid-programme as a result of external political issues which forced a complete re-design of an existing CEB with extensive space heritage but containing many ITAR controlled electronic components to a new, more efficient solution, free of ITAR controlled parts. The methodology and processes used to ensure the demanding schedule is maintained through each stage of the project will be presented including an insight into planning, decision-making, communication, risk management, and resource management; all essential to the continued success of the programme.
World Space Observatory Ultraviolet (WSO-UV) is a major Russian-led international collaboration to develop a large space-borne 1.7 m Ritchey-Chrétien telescope and instrumentation to study the universe at ultraviolet wavelengths between 115 nm and 320 nm, exceeding the current capabilities of ground-based instruments. The WSO Ultraviolet Spectrograph subsystem (WUVS) is led by the Institute of Astronomy of the Russian Academy of Sciences and consists of two high resolution spectrographs covering the Far-UV range of 115-176 nm and the Near-UV range of 174-310 nm, and a long-slit spectrograph covering the wavelength range of 115-305 nm. The custom-designed CCD sensors and cryostat assemblies are being provided by e2v technologies (UK). STFC RAL Space is providing the Camera Electronics Boxes (CEBs) which house the CCD drive electronics for each of the three WUVS channels.
This paper presents the results of the detailed characterisation of the WUVS CCD drive electronics. The electronics include a novel high-performance video channel design that utilises Digital Correlated Double Sampling (DCDS) to enable low-noise readout of the CCD at a range of pixel frequencies, including a baseline requirement of less than 3 electrons rms readout noise for the combined CCD and electronics system at a readout rate of 50 kpixels/s. These results illustrate the performance of this new video architecture as part of a wider electronics sub-system that is designed for use in the space environment. In addition to the DCDS video channels, the CEB provides all the bias voltages and clocking waveforms required to operate the CCD and the system is fully programmable via a primary and redundant SpaceWire interface. The development of the CEB electronics design has undergone critical design review and the results presented were obtained using the engineering-grade electronics box. A variety of parameters and tests are included ranging from general system metrics, such as the power and mass, to more detailed analysis of the video performance including noise, linearity, crosstalk, gain stability and transient response.
Readout noise is a key factor in the performance of optical systems based on charge coupled devices (CCDs). Recent developments have shown that digital correlated double sampling (DCDS) using weighted averaging may provide a further reduction in the system readout noise. This paper describes recent advances in noise filtering using DCDS. Particular emphasis is placed on optimising weighted averaging filters to reduce 1/f noise and the characterisation of system performance when using the unsettled samples within the pixel period. Experimental results are presented and compared with theoretical predictions based on the extracted noise spectrum. The analysis provides a detailed study of the relationship between the 1/f corner frequency, the pixel frequency and weighted averaging technique in comparison with the theory of matched filters. Furthermore, the results include a comparison of the noise profile with measured and simulated noise patterns. Key system metrics, including linearity and gain stability, have been characterised and are presented to confirm the suitability of this technique for high-performance scientific applications.
As part of a strategy to provide increasingly complex systems to customers, e2v is currently developing the sensor solution for focal plane array for the WSO-UV (World Space Observatory – Ultraviolet) programme, a Russian led 170 cm space astronomical telescope. This is a fully integrated sensor system for the detection of UV light across 3 channels: 2 high resolution spectrometers covering wavelengths of 115 – 176 nm and 174 – 310 nm and a Long-Slit Spectrometer covering 115 nm – 310 nm. This paper will describe the systematic approach and technical solution that has been developed based on e2v’s long heritage, CCD experience and expertise. It will show how this approach is consistent with the key performance requirements and the overall environment requirements that the delivered system will experience through ground test, integration, storage and flight.
The J-PAS (Javalambre Physics-of-the-Accelerating-Universe Astrophysical Survey) project will perform a five-year
survey of the northern sky from a new 2.5m telescope in Teruel, Spain. We describe the design concept of a complete
cryogenic camera with a mosaic focal plane and 1.2 gigapixel science array which is to be commercially supplied. The
focal plane is contained within a novel liquid-nitrogen-cooled vacuum cryostat, with proximity drive electronics
designed to achieve a 4 e- readout noise from the 224-channel CCD system.
A system has been designed and built for developing the technique of Digital Correlated Double Sampling (DCDS) to
eliminate reset noise in CCD camera systems. It allows a wide range of DCDS methods and algorithms to be tested and
is based on the CCD203 from e2v technologies. The test system is described and sub-system noise characterisation test
results are presented and compared with the theoretically expected performance. Furthermore, tests based on the
weighted averaging of samples are described and results presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.