Purpose: Photon-counting silicon strip detectors are attracting interest for use in next-generation CT scanners. For CT detectors in a clinical environment, it is desirable to have a low power consumption. However, decreasing the power consumption leads to higher noise. This is particularly detrimental for silicon detectors, which require a low noise floor to obtain a good dose efficiency. The increase in noise can be mitigated using a longer shaping time in the readout electronics. This also results in longer pulses, which requires an increased deadtime, thereby degrading the count-rate performance. However, as the photon flux varies greatly during a typical CT scan, not all projection lines require a high count-rate capability. We propose adjusting the shaping time to counteract the increased noise that results from decreasing the power consumption.
Approach: To show the potential of increasing the shaping time to decrease the noise level, synchrotron measurements were performed using a detector prototype with two shaping time settings. From the measurements, a simulation model was developed and used to predict the performance of a future channel design.
Results: Based on the synchrotron measurements, we show that increasing the shaping time from 28.1 to 39.4 ns decreases the noise and increases the signal-to-noise ratio with 6.5% at low count rates. With the developed simulation model, we predict that a 50% decrease in power can be attained in a proposed future detector design by increasing the shaping time with a factor of 1.875.
Conclusion: Our results show that the shaping time can be an important tool to adapt the pulse length and noise level to the photon flux and thereby optimize the dose efficiency of photon-counting silicon detectors.
Photon-counting detectors are expected to bring a range of improvements to patient imaging with x-ray computed tomography (CT). One is higher spatial resolution. We demonstrate the resolution obtained using a commercial CT scanner where the original energy-integrating detector has been replaced by a single-slice, silicon-based, photon-counting detector. This prototype constitutes the first full-field-of-view silicon-based CT scanner capable of patient scanning. First, the pixel response function and focal spot profile are measured and, combining the two, the system modulation transfer function is calculated. Second, the prototype is used to scan a resolution phantom and a skull phantom. The resolution images are compared to images from a state-of-the-art CT scanner. The comparison shows that for the prototype 19 lp / cm are detectable with the same clarity as 14 lp / cm on the reference scanner at equal dose and reconstruction grid, with more line pairs visible with increasing dose and decreasing image pixel size. The high spatial resolution remains evident in the anatomy of the skull phantom and is comparable to that of other photon-counting CT prototypes present in the literature. We conclude that the deep silicon-based detector used in our study could provide improved spatial resolution in patient imaging without increasing the x-ray dose.
Photon-counting silicon strip detectors are attracting interest for use in next generation CT scanners. For silicon detectors, a low noise floor is necessary to obtain a good dose efficiency. A low noise floor can be achieved by having a filter with a long shaping time in the readout electronics. This also increases the pulse length, resulting in a long deadtime and thereby a degraded count-rate performance. However, as the flux typically varies greatly during a CT scan, a high count-rate capability is not required for all projection lines. It would therefore be desirable to use more than one shaping time within a single scan. To evaluate the potential benefit of using more than one shaping time, it is of interest to characterize the relation between the shaping time, the noise, and the resulting pulse shape. In this work we present noise and pulse shape measurements on a photon-counting detector with two different shaping times along with a complementary simulation model of the readout electronics. We show that increasing the shaping time from 28.1 ns to 39.4 ns decreases the noise and increases the signal-to-noise ratio (SNR) with 6.5% at low count rates and we also present pulse shapes for each shaping time as measured at a synchrotron source. Our results demonstrate that the shaping time plays an important role in optimizing the dose efficiency in a photon-counting x-ray detector.
Silicon photon-counting spectral detectors are promising candidates as the next generation detectors for medical CT. For silicon detectors, a low noise floor is necessary to obtain good detection efficiency. A low noise floor can be obtained by having a slow shaping filter in the ASIC, but this leads to a long dead-time, thus decreasing the count-rate performance. In this work, we evaluate the benefit of utilizing two sub-channels with different shaping times. It is shown by simulation that utilizing a dual shaper can increase the dose efficiency for equal count-rate capability by up to 17%.
Photon counting detectors are expected to be the next big step in the development of medical computed tomography. Accurate modeling of the behavior of photon counting detectors in the high count rate regime is therefore important for detector performance evaluations and the development of accurate image reconstruction methods. The commonly used ideal nonparalyzable detector model is based on the assumption that photon interactions are converted to pulses with zero extent in time, which is too simplistic to accurately predict the behavior of photon counting detectors in both low and high count rate regimes. In this work we develop a statistical count model for a nonparalyzable detector with finite pulse length and use it to derive the asymptotic mean and variance of the output count distribution using tools from renewal theory. We use the statistical moments of the distribution to construct an estimator of the true number of counts for pileup correction. We confirm the accuracy of the model and evaluate the pileup correction using Monte Carlo simulations. The results show that image quality is preserved for surprisingly high count rates.
Insufficient angular sampling in computed tomography can lead to aliasing artifacts that impair the quality of the reconstructed images. However, the angular sampling rate is often constrained due to practical limitations, such as the bandwidth of the data read-out or read-out noise. In this work, we present a new sampling scheme that allows aliasing-free image reconstruction with fewer angular samples. This is achieved by introducing a temporal offset between the samples acquired by adjacent detector pixels in the detector array. The temporal shift implies that the positions where the detector pixels sample the 2D Radon transform are interleaved in the angular direction, and if the shift is carefully selected, an optimal (hexagonal) sampling grid can be obtained. Optimal sampling grids are particularly effective in tomographic imaging since the bowtie-shaped spectral support of the sinogram allows a close tiling of the replicated spectra. We derive the sampling requirements when the proposed method is used and demonstrate that the obtained sampling grid reduces the aliasing artifacts compared to standard rectangular sampling at equal number of angular samples in simulated and experimental images. It is shown that the required number of angular samples can be reduced by 25-40%. The method is robust and easy to implement, and can therefore be of practical use for CT imaging where the number of views is limited.
This course explains the principles of photon counting detectors for spectral x-ray imaging. Typical technical implementations are described and fundamental differences to energy integrating systems are pointed out. In particular, the issues of high-rate handling and the effect of detector cross talk on energy resolution are described. Requirements on electronics for spectral imaging in computed tomography is also discussed.
A second objective of the course is to describe how energy sensitive counting detectors make use of the energy sampling of the linear attenuation coefficients of the background and target materials for any given imaging task; methods like material basis decomposition and optimal energy weighting will be explained.
The second objective highlights the interesting fact that while the spatial-frequency descriptor of signal-to-noise-ratio transfer (DQE) of a system gives a complete characterization of performance for energy integrating (and pure photon counting) systems, it fails to characterize multibin systems since a complete description of the transfer characteristics requires specification of how the information of each energy bin is handled. The latter is in turn dependent on the imaging case at hand which shows that there is no such thing as an imaging case independent system DQE for photon counting multibin systems. We also suggest how this issue could be resolved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.