Volume holographic gratings, both transmission and reflection-type, may be employed as one-dimensional pho- tonic crystals. More complex two- and three-dimensional holographic photonic-crystalline structures can be recorded using several properly organized beams. As compared to colloidal photonic crystals, their holographic counterparts let minimize distortions caused by multiple inner boundaries of the media. Unfortunately, it’s still hard to analyze spectral response of holographic structures. This work presents the results of thick holographic gratings analysis based on spectral-angular selectivity contours approximation. The gratings were recorded in an additively colored fluorite crystal and a glassy polymer doped with phenanthrenequinone (PQ-PMMA). The two materials known as promising candidates for 3D diffraction optics including photonic crystals, employ diffusion-based mechanisms of grating formation. The surfaces of spectral-angular selectivity were obtained in a single scan using a white-light LED, rotable table and a matrix spectrometer. The data expressed as 3D plots make apparent visual estimation of the grating phase/amplitude nature, noninearity of recording, etc., and provide sufficient information for numerical analysis. The grating recorded in the crystal was found to be a mixed phase-amplitude one, with different contributions of refractive index and absorbance modulation at different wavelengths, and demonstrated three diffraction orders corresponding to its three spatial harmonics originating from intrinsically nonlinear diffusion-drift recording mechanism. Contrastingly, the grating in the polymeric medium appeared purely phase and linearly recorded.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.