Compact refractive adaptive optics (CRAO) is a visible compact adaptive optics (AO) system optimized for small telescopes. It was mounted on the 1.3 m Araki telescope of Koyama Astronomical Observatory (KAO) in Kyoto Sangyo University, Japan. CRAO aims to improve the natural seeing 3” to 0.8” at 500 nm at the KAO site. Thus, it needs a large format and highly frequent camera for wide field survey (WFS) and a largely segmented depth map (DM) because the natural seeing ∼3” at the KAO site is especially poor for astronomical observations. To improve the performance of CRAO with a new WFS and DM, we searched for the optimal AO parameters (the number of WFS subapertures (NWFS), the number of DM actuators (NDM), and the loop frequency (fL) with two AO simulators using yao and COMPASS. Consequently, we found that NWFS > 12×12, NDM > 80, and fL > 800 Hz are necessary to achieve the full width at half maximum (FWHM) < 0.8” for point spread function (PSF) under the KAO site’s atmospheric conditions. Finally, we calculated the limiting magnitude (Vlim) with commercially available sensors for WFS and DMs. By combining ORCA-Lightning (Hamamatsu Photonics) and DM97-15 (ALPAO), a deeper limiting magnitude (Vlim ∼ 4.4) can be achieved, even with a 1 m-class telescope.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.