Precise and accurate wavelength calibration of spectrographs is essential for key science cases, e.g. the search for extrasolar planets, a possible variation of fundamental constants and the direct observation of cosmic expansion.
A crucial tool for this are laser frequency combs (LFCs), directly linking the accuracy of atomic clocks to optical laser lines.
However, strong material dispersion and large spectral separation from the established infrared laser oscillators so far prevent the use of LFCs for spectrograph calibration in the blue and UV part of the spectrum. At OHP/SOPHIE, we demonstrated for the first time the calibration of an astronomical spectrograph using an astrocomb in the ultraviolet spectral range below 400nm. Key technology used were nano-fabricated, periodically-poled waveguides in lithium niobate photonic chips, fed by either a robust infrared electro-optic comb generator or a chip-integrated microresonator comb. In an end-to-end test, we could demonstrate stable and accurate LFC-based spectrograph calibration, showcasing a viable path towards precision wavelength calibration of spectrographs in the ultraviolet, crucial e.g. for the future ELT/ANDES.
Precision astronomical spectroscopy is vital for seeking life beyond Earth and often relies on detecting very small wavelength shifts over years. Precision of these instruments are ensured by regular wavelength calibration and laser frequency combs stabilized with frequency standards have recently emerged as suitable sources. In this work, we demonstrate wavelength calibration of an astronomical spectrograph in ultraviolet spectrum below 400 nm. This is achieved using second- and third- order nonlinear effects in thin-film, periodically poled lithium niobate waveguides with an infrared electro-optic comb generator at 18 GHz.
Continuous-wave (CW) laser-driven integrated Kerr microresonators enable broadband optical frequency combs with high repetition rates and low threshold power, in a compact footprint. A drawback of such microcombs is the low conversion efficiency from the pump laser to the comb lines, which is often in the few percent range or below. Here, complementing previously demonstrated approaches to increase conversion efficiency, we demonstrate a novel approach that leverages a chip-based rare-earth (Tm3+)-doped optical gain medium to boost the pump-to-comb conversion efficiency by more than one order of magnitude. Importantly, the gain medium does not require an additional pump laser, but recycles residual pump light from the Kerr-comb: the CW pump of the Kerr-comb (1610 nm) coincides with the pump wavelength of the on-chip gain medium, allowing unconverted pump power to be absorbed and transferred to the comb lines within gain window (1700 - 1900 nm). This enables a new class of highly efficient Kerr-combs for applications e.g. in data centers and optical computing.
Amplification of ultrafast optical pulses is key to a large number of applications in photonics. While ultrashort pulse amplification is well established in optical gain fibers, it is challenging to achieve in photonic-chip integrated waveguides, due to their inherent high-optical nonlinearity.
Here, we demonstrate for the first-time femtosecond pulse amplification on an integrated photonic chip. Our approach translates the concept of chirped pulse amplification to the chip level. Specifically, we leverage tailored all-normal dispersion, large mode-area gain waveguides to realize a low-nonlinearity, high-gain, short-length optical amplifier in which pulse propagation is dominated by dispersion. We show more than 17dB amplification of ultrashort pulses from a 1 GHz femtosecond source at center wavelength of 1815 nm. The amplified pulses have an on-chip output pulse peak power of 800 W with a pulse duration of 116 fs.
Dissipative Kerr solitons (DKS) in high-Q microresonators provide femtosecond pulses and frequency combs with high-repetition rate; they have seen applications from optical spectroscopy, data transfer and laser ranging to astronomical spectrograph calibration. Usually DKS are generated in ring-resonators, where only a limited set of design parameters are available. Here, we demonstrate DKS in an integrated high-Q Fabry-Perot microresonator formed by two photonic crystal reflectors in a waveguide. This platform opens a large design space with opportunities for extension of DKS into new wavelength ranges as well as generally phase-matching and spectral engineering for broadband frequency conversion in integrated nonlinear microresonators.
Moving refractive index fronts in waveguides with dispersion is a special type of spatio-temporal modulation leading to the change of signal frequency and wavenumber. The interaction of light with such fronts allows frequency conversion, light stopping, optical delays as well as bandwidth and pulse duration manipulation. We will present theoretical and experimental examples of signal transmission, reflection and trapping by the front and highlight special situations such as light stopping, time reversal or optical push broom effect. We will geometrically consider indirect transitions in the dispersion relation using the phase continuity relation at the front and present numerical solutions of the linear Schrödinger equation which follows from the slowly varying envelope approximation of the wave equation. In particular, for highly dispersive waveguides a temporal evolution of the spatial wave envelopes are considered in contrast to conventional spatial evolution of temporal envelopes. Further, we will present an overview of experimental results and estimate the maximal achievable effects for each of the application in different waveguide systems.
We report on light trapping by a moving refractive index front inside a silicon waveguide, the so-called optical push broom effect. The front generated by a fast pump pulse collects and traps the energy of a signal wave with smaller group velocity tuned near to the band gap of the waveguide with hyperbolic dispersion. The energy of the signal wave is accumulated inside the front and distributed in frequency. The presented effect can be utilized to compress signals in time and space.
A moving refractive index front can induce an indirect transition between states before or after the front. A linear Schrödinger equation can be used to describe the transition of a slowly varying signal envelope at the front. In waveguides with weak dispersion usually spatial evolution of the pulse temporal profile is tracked. However, we show that for waveguides with strong dispersion it is beneficial to track temporal evolution of the pulse spatial profile. Simulation examples close to the band edge of a photonic crystal waveguide are presented. We also compare the numerical results with the theoretical predictions from the phase continuity criterion.
Dynamic manipulation of light has received considerable attention in recent years. The process of an optical signal undergoing a transition between two modes of a photonic structure is referred to as a photonic transition. We show that a signal wave interacting with a free carrier front in a slow light waveguide experiences indirect photonic transitions leading to reflection from the moving front. Theory and experimental results are presented. The front induced dynamic frequency conversion is also compared to the frequency shifting based on other nonlinear effects like cross-phase modulation and four wave mixing.
Moving refractive index fronts in waveguides with dispersion is a special type of spatio-temporal modulation. The interaction of light with that front allows frequency conversion, light stopping, optical delays, and bandwidth and pulse duration manipulation. Here, we present examples of signal transmission, reflection, trapping and stopping. We will geometrically consider indirect transitions in the dispersion relation using the phase continuity relation at the front and present numerical solutions of the linear Schrödinger equation which follows from the slowly varying envelope approximation of the wave equation.
Light propagating in waveguides can be manipulated by a moving refractive index front. A linear Schrödinger equation can be used to describe the interaction of a slowly varying signal envelope with a front. In waveguides with weak dispersion usually spatial evolution of the pulse temporal profile is tracked. However, we show that for waveguides with strong dispersion it is beneficial to track temporal evolution of the pulse spatial profile. Simulation examples close to the band edge of a photonic crystal waveguide are presented.
The process of an optical signal undergoing a transition between two modes of a photonic structure is referred to as a photonic transition. We show that a signal wave interacting with a free carrier front in a slow light waveguide experiences indirect photonic transitions leading to transmission or reflection from the moving front. Theory and experimental results are presented. The front induced dynamic frequency conversion is also compared to the frequency shifting based on other nonlinear effects like cross-phase modulation and four wave mixing.
Ultrashort laser pulses from vertical-external-cavity surface-emitting lasers (VECSELs) have been receiving much attention in the semiconductor laser community since the first demonstration of sub-ps-pulsed devices more than a decade ago. Originally relying on semiconductor saturable-absorber mirrors for pulse formation, mode-locked operation has not only become accessible by using a variety of saturable absorbers, but also by using a saturable-absorber-free technique referred to as self-mode-locking (SML). Here, we highlight achievements in the field of SML-VECSELs with quantum-well and quantum-dot gain chips, and study the influence of a few VECSEL parameters on the assumed nonlinear lensing behavior in the system.
We present a serially-connected two-chip vertical-external-cavity surface-emitting laser design, which generates dual wavelength emission with a wavelength separation of 10 nm and over 600 W intracavity power. Intracavity type-I second-harmonic generation and sum-frequency generation have been performed in a LiNbO3 crystal. By employing different chip-combinations as well as birefringent filters, the laser is able to generate high-power emission with two wavelengths, which exhibit the same polarization and a desirable wavelength separation. Furthermore, the dependence of the emission wavelength on the cavity angle on the VECSEL chip is highlighted, which provides an additional means of wavelength tuning in VECSELs.
Vertical-external-cavity surface-emitting lasers (VECSELs) have proved to be versatile lasers which allow for various emission schemes which on the one hand include remarkably high-power multi-mode or single-frequency continuouswave operation, and on the other hand two-color as well as mode-locked emission. Particularly, the combination of semiconductor gain medium and external cavity provides a unique access to high-brightness output, a high beam quality and wavelength flexibility. Moreover, the exploitation of intra-cavity frequency conversion further extends the achievable radiation wavelength, spanning a spectral range from the UV to the THz. In this work, recent advances in the field of VECSELs are summarized and the demonstration of self-mode-locking (SML) VECSELs with sub-ps pulses is highlighted. Thereby, we present studies which were not only performed for a quantum-well-based VECSEL, but also for a quantum-dot VECSEL.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.