FTTH networks require implementing a diplexer at each user termination. According to most of the standards, this
diplexer detects a download signal beam at 1.49μm and emits an upload signal beam at 1.31μm on the same single
mode fibre. Both signals exhibit datarate speed below 2.5Gbps. Today, most of the diplexers are obtained by actively
aligning a set of individual optoelectronic components and
micro-optics. However, new manufacturing solutions
satisfying very low cost and mass production capability requirements of this market would help to speed the massive
spreading of this technology. In this paper, we present an original packaging design to manufacture Diplexer Optical
Sub-Assembly for FTTH application. A dual photodiode is stacked over a VCSEL and detects both the download
signal beam at 1.49μm passing through the laser and one part of the upload signal beam at 1.31μm for monitoring.
To satisfy this approach, an innovative VCSEL has been designed to have a very high transmission at 1.49μm. All
these components are mounted on a very small circuit board on glass including also integrated circuits such as
transimpedance amplifier. So, the device combines advanced optoelectronic components and highly integrated
Multi-Chip-Module on glass approach using collective wafer-level assembling technologies. For the single mode
fibre optical coupling, active and passive alignment solutions are considered.
The most prominent mechanism of dark current in infrared detectors based on intersubband transitions in quantum wells (QWIP) is due to interaction of electrons with longitudinal optical phonons. Theoretical expressions are derived for the carrier lifetime, and for generation currents due to both photo-excitation as well as thermal excitation in a quantum well. Detector gain is discussed briefly. Calculated values of thermal generation currents and the ratio of photo-current to thermal current are found to accord well with experimental data. Finally the BLIP performance of QWIPs is investigated and the theory gives TBLIP equals 81 K for a 9 micrometers cut-off detector with a 2D grating and optical cavity, for 300 K background temperature, optics f-number equals 1 with 100% transmission, and if a photo- to dark current ratio equals 1 criterion is used.
In this paper we present an experimental investigation of the performance of GaAs/AlGaAs multiple quantum well photodetectors. The purpose of this exercise was to independently evaluate and verify the responsivity of the GaAs/AlGaAs quantum well infrared photodetectors developed at the Industrial Microelectronics Center in Sweden. These devices use 2D gratings to couple radiation into the detectors and a cladding layer to enhance the coupling of radiation. The devices were of two types: those optimized for high detectivity, and those optimized for high quantum efficiency. The tests performed on these devices included measurement of optical responsivity vs. bias, spectral response, Detectivity (D*), and measurement of cross-talk between pixels. Several interesting observations were made during the investigation and will be reported in the paper.
In0.53Ga0.47As/InP infrared detectors with peak absorption at a wavelength of 8.5 micrometers have been fabricated and tested. It is shown that very high current responsivities and high gain are obtained. It is found that gain increases drastically when approaching detector voltages close to -8.5 V, which is explained by carrier impact excitation of electrons from the QW ground state to the excited extended state. The detectivity D* is about 1.2(DOT)1010 cm Hz1/2 W-1 at 80 K for a 45 degree(s) polished edge detector assuming unpolarized radiation. Grating coupling is studied by etching crossed gratings into the upper part of the mesas. The increase in responsivity as compared to a polished edge detector is by a factor of 2.5 to 3, irrespective to mesa sizes 500 X 500 or 150 X 150 micrometers 2. This gives a corresponding detectivity of (3 - 3.5)(DOT)1010 cm Hz1/2 W-1 at 80 K for unpolarized radiation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.