Single photon counting detectors are extremely important in the evolution of quantum technologies. The existing devices for the low-flux measurements are bulky and their implementation cannot be made with small footprints. Integrated photonics aims to allow the miniaturization of these setups. We present simulation results for the design of a single 1x10 multimode interference coupler (MMI) in terms of the power imbalance between the output waveguides, optical losses, and tolerance on the operating wavelength. This component acts as the fundamental building block of a photonic integrated circuit (PIC) in the TriPleX platform, acting as an optical divider that is able to bring down the power to ratio levels of 1:10-5. The central operating wavelength is 850 nm. This PIC is based on five cascaded 1x10 multimode interference couples (MMIs) in a novel function for bringing the power to an exceptionally low, and consistent level with repeatable and reproducible results. The fabricated photonic chips have been characterized in lab settings. The two best-performed PICs have been packaged and incorporated in a laboratory setup with embedded reference standards for optical power measurement in a technique referred to as "self-calibration". They were tested in system settings, where they successfully demonstrated that we have achieved a linear splitting ratio of 1:10-9 by cascading nine splitters.
In this paper, we present the development of a miniaturized Laser Doppler Vibrometer (LDV) system, based on the 3D hybrid integration of the Si3N4 platform of LioniX (TriPleX) and the polymer platform of FhG-HHI (PolyBoard). The photonic integrated circuit (PIC) supports all the functionalities of an LDV system including the splitting of the input light to the measurement and the reference beam, the introduction of an optical frequency shift up to 100 kHz, polarization handling and detection of the reflected measurement beam, using a heterodyne detection technique. The optical frequency shift is accommodated in the TriPleX section of the PIC based on a simple serrodyne scheme, where a phase modulator is driven with a sawtooth signal with the desired frequency. The modulation of the optical field is based on the stress-optic effect utilizing thin-films of PZT deposited on top of the waveguide structures of the TriPleX platform, capable of supporting modulation frequencies up to several MHz. The PolyBoard part enables polarization handling and heterodyne detection of the reflected beam using micro-optic elements on chip, including a polarization beam splitter (PBS), a half wave plate (HWP), and a pair of balanced detectors with four photodiodes that are flip chip bonded on the top. The TriPleX and the PolyBoard platform were brought together based on the 3D hybrid integration, using mode size converters and vertical directional couplers with coupling losses lower than 15 dB. On-chip beating, using the integrated photodiodes is experimentally demonstrated.
Near-infrared (NIR) spectroscopy has acquired widespread adoption in various sectors as a result of its benefits over other analytical techniques, the most notable of which is the ability to record spectra for solid samples without any prior manipulation. Furthermore, advances in instrumentation have led to the creation of compact and high-speed spectrometers that can be used in a variety of scenarios, including hazardous materials identification. Fourier Transform NIR (FT-NIR) technology is one of the most useful tools for onsite analysis of chemical and biological substances. Herein, we propose a compact, portable FT-NIR spectroscopic sensor for field measurements, based on commercial broadband light source and spectrometer for detection of chemical precursors of explosives. We mainly focus on four compounds, ammonium nitrate, potassium nitrate, sodium nitrate and urea, some of the best-known chemical precursors of explosives with NIR content. A customized spectral library is constructed, including the forementioned substances under different environmental conditions. We emphasize on two basic factors that can affect the NIR spectra: the relative humidity and the ambient temperature. For the unknown spectrum identification, we evaluate prediction models which involve the use of Random Forest and Support Vector Machine, as well as the Hit Quality Index (HQI) value. The FT-NIR spectroscopic sensor additionally includes an integrated communication module that provides measurement spectra and results to a novel edge computing platform, called DECIoT. We demonstrate the operation of the FT-NIR spectroscopic sensor in real settings under humidity, straight sunlight, and temperature fluctuations, achieving maximum accuracy of 0.96.
Existing transceiver technology inside data centers will soon reach its limits due to the enormous traffic growth rates driven by new, bandwidth-hungry applications. Efforts to develop the next generation of 800Gbps and 1.6Tbps transceivers for intra-DC optical interconnects have already kicked-off to address the demands in traffic, the exhaustion of the ports at the digital switches and the power consumption limitations inherent to the use of many lower capacity modules. The new generation of optical modules must also provide Terabit capacities at low cost, necessitating the use of high-volume manufacturing processes. TERIPHIC is an EU funded R and D project that aims at developing transceiver modules with up to 1.6 Tbps capacity over 16 lanes in duplex fiber and cost less than 1 € per Gbps for distances up to 2 km, utilizing PAM-4 modulation for 100Gbps per lane and high-volume production compatible transceiver designs. At the component level, TERIPHIC will rely on arrays of high-speed electronics, InP Externally Modulated Lasers (EMLs) and InP photodetectors, and at the integration level it will rely on a polymer photonic platform as a host motherboard, leveraging its flexibility and powerful toolbox. A summary of the progress on the TERIPHIC transceiver modules concept, both at the component level and integration level is presented in this paper.
We present simulation and characterization results for the design of a two-port grating coupler with achievable coupling efficiency up to 54% together with simulation and characterization results of three different multimode interference (MMI) coupler structures, 1x2, 1x4 and 1x8 with insertion loss and output power imbalance as low as 0.2 dB and 0.05 dB, respectively. Both grating coupler and MMI photonic structures were designed on the TriPleX platform. Finally, we present these structures as part of a novel, photonic, ultrasensitive biosensor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.