The high numerical aperture EUV exposure systems aim to target a 16-nm pitch to extend Moore's law throughout the next decade. However, thinner photoresist layers and worsened stochastic effects due to photons hitting the wafer at a shallower angle is a major concern. Furthermore, the projection optics utilize an anisotropic reduction factor, which remains an open issue, requiring a dual "half-field" mask exposure sequence or a 12-inch mask for each high-NA EUV layer. Therefore, the use of attenuated phase-shift masks (APSM) to extend 0.33NA to a 28-nm pitch becomes relevant. We will discuss the prospects on optical properties refractive index (n,k) optimization with material selection, feasibility of achieving a 28-nm pitch, 3D effect mitigation and the impact of mask tonality (dark tone vs clear tone). Finally, the challenges on the needs of new APSM materials that meet the requirements of high temp thermal stability, durability under mask clean solution, its dry etching characteristics, the corresponding repair process will be addressed and the experimental results on the Ru-based candidates will be shown.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.