Photon-counting detector (PCD) bring multiple advantages, including higher contrast, lower noise, and improved spatial resolution compared to the conventional energy-integrating detector (EID) scanners. We investigated the image quality performance of a prototype CdZnTe-based photon-counting detector (PCD) CT scanner in this phantom study. We performed a phantom study 3D-printed inserts which mimicked coronary artery plaques along with calibrated concentrations of iodine, water, soft plaque (fat), and hard plaque (calcium). The phantom was scanned with similar settings on a CdZnTe-based PCD-CT system and a comparable state-of-the-art EID-CT system. Image noise, CT number stability, and CNR were measured in matched circular regions of interest. PCD-CT demonstrated ~50% lower noise compared to EID-CT across all x-ray exposures. Both systems showed a CT number deviation due to noise in the ±2 HU range. CNR across iodine, soft and hard plaques, and water showed improvement in the 201%-332% range for PCD-CT over EID-CT. Lastly, in a noise-matched setting PCD-CT can achieve similar image quality as EID-CT at 25% of the radiation dose.
Purpose: Hematoma expansion (HE) for patients with intracerebral hemorrhage (ICH) has been shown to be a predictor of clinical neurological deterioration in ICH patients. As of now, there is no diagnosis which may indicate HE at the time of presentation. In this study, a Random Forest-based machine learning model with clinical data from ICH patients was developed and used as input to predict HE. Materials and Methods: 200 ICH patients with known hematoma evolution, were enrolled in this study. Data included brain volume, and hematoma volume based on non-contrast CT (NCCT) measurements; and the following patient specific clinical variables: age, sex, Glasgow Coma Scale score (GCS), ICH score, NIH Stroke Scale (NIHSS) and time from onset of ICH to initial NCCT. Random Forest machine learning model was developed to predict HE using 104/26 subjects training/testing split. Grid search strategy tuned the classifier parameters and a 5-fold cross-validation approach was used during training. The performance of model was evaluated by sensitivity, specificity, and Area Under the Curve (AUC). Results: The developed Random Forest model was able to predict HE with sensitivity of 0.846, specificity of 0.769, AUC of 0.807. Hematoma volume and time from onset of ICH to initial NCCT were the most important features, followed by NIHSS and brain volume. Conclusion: A Random Forest-based machine learning model with multiple clinical data from ICH patients as input performed well in predicting HE. Brain volume may be a new predictor of hematoma expansion.
KEYWORDS: Magnetic resonance imaging, Lawrencium, Feature extraction, Medical imaging, Image segmentation, Computed tomography, Systems modeling, Process modeling, Monte Carlo methods, Data acquisition
Purpose: Intracranial hemorrhage (ICH) is characterized as bleeding into the brain tissue, intracranial space, and ventricles and is the second most disabling form of stroke. Hematoma expansion (HE) following ICH has been correlated with significant neurological decline and death. For early detection of patients at risk, deep learning prediction models were developed to predict whether hematoma due to ICH will expand. This study aimed to explore the feasibility of HE prediction using a radiomic approach to help clinicians better stratify HE patients and tailor intensive therapies timely and effectively. Materials and Methods: Two hundred ICH patients with known hematoma evolution, were enrolled in this study. An open-source python package was utilized for the extraction of radiomic features from both non-contrast computed tomography (NCCT) and magnetic resonance imaging (MRI) scans through characterization algorithms. A total of 99 radiomic features were extracted and different features were selected for network inputs for the NCCT and MR models. Seven supervised classifiers: Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest, Logistic Regression, K-Nearest Neighbor and Multilayer Perceptron were used to build the models. A training:testing split of 80:20 and 20 iterations of Monte Carlo cross validation were performed to prevent overfitting and assess the variability of the networks, respectively. The models were fed training datasets from which they learned to classify the data based on pre-determined radiomic categories. Results: The highest sensitivity among the NCCT classifier models was seen with the support vector machine (SVM) and logistic regression (LR) of 72 ± 0.3% and 73 ± 0.5%, respectively. The MRI classifier models had the highest sensitivity of 68 ± 0.5% and 72 ± 0.5% for the SVM and LR models, respectively. Conclusions: This study indicates that the NCCT radiomics model is a better predictor of HE and that SVM and LR classifiers are better predictors of HE due to their more cautious approach indicated by a higher sensitivity metric.
Computed tomography is primarily the modality of choice to assess stability of nonsolid pulmonary nodules (sometimes referred to as ground-glass opacity) for three or more years, with change in size being the primary factor to monitor. Since volume extracted from CT is being examined as a quantitative biomarker of lung nodule size, it is important to examine factors affecting the performance of volumetric CT for this task. More specifically, the effect of reconstruction algorithms and measurement method in the context of low-dose CT protocols has been an under-examined area of research. In this phantom study we assessed volumetric CT with two different measurement methods (model-based and segmentation-based) for nodules with radiodensities of both nonsolid (-800HU and -630HU) and solid (-10HU) nodules, sizes of 5mm and 10mm, and two different shapes (spherical and spiculated). Imaging protocols included CTDIvol typical of screening (1.7mGy) and sub-screening (0.6mGy) scans and different types of reconstruction algorithms across three scanners. Results showed that radio-density was the factor contributing most to overall error based on ANOVA. The choice of reconstruction algorithm or measurement method did not affect substantially the accuracy of measurements; however, measurement method affected repeatability with repeatability coefficients ranging from around 3-5% for the model-based estimator to around 20-30% across reconstruction algorithms for the segmentation–based method. The findings of the study can be valuable toward developing standardized protocols and performance claims for nonsolid nodules.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.