Whispering gallery modes (WGMs) allow for remarkable refractive index sensing performance with extremely low detection limits, and thus have found use in various emerging label free biosensing applications. Among the different types of resonators which have been studied, microcapillaries have the unique property of having the evanescent fields extend into and sample the medium inside the resonator, which is particularly interesting because the resonator itself serves as a microfluidic channel.
Here, lasing of the WGMs in fluorescent microcapillaries is demonstrated for the first time, and their application to refractive index sensing is investigated. The laser gain medium used here is embedded inside a high refractive index polymer coating deposited onto the inner surface of the capillary. Lasing can only be realized for thick polymer coatings (in this case ≥ 800 nm), with higher Q factor but also stronger confinement of the propagating wave, which lowers the refractive index sensitivity compared to non-lasing capillaries which can have thinner polymer coatings. We however find that the large improvement in signal-to-noise ratio and Q factor realized upon lasing more than compensates for the reduced sensitivity, resulting in an order-of-magnitude improvement in the detection limit for refractive index sensing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.