Timur Kuzhagaliyev, Neil Clancy, Mirek Janatka, Kevin Tchaka, Francisco Vasconcelos, Matthew Clarkson, Kurinchi Gurusamy, David Hawkes, Brian Davidson, Danail Stoyanov
Irreversible electroporation (IRE) is a soft tissue ablation technique suitable for treatment of inoperable tumours in the pancreas. The process involves applying a high voltage electric field to the tissue containing the mass using needle electrodes, leaving cancerous cells irreversibly damaged and vulnerable to apoptosis. Efficacy of the treatment depends heavily on the accuracy of needle placement and requires a high degree of skill from the operator. In this paper, we describe an Augmented Reality (AR) system designed to overcome the challenges associated with planning and guiding the needle insertion process. Our solution, based on the HoloLens (Microsoft, USA) platform, tracks the position of the headset, needle electrodes and ultrasound (US) probe in space. The proof of concept implementation of the system uses this tracking data to render real-time holographic guides on the HoloLens, giving the user insight into the current progress of needle insertion and an indication of the target needle trajectory. The operator’s field of view is augmented using visual guides and real-time US feed rendered on a holographic plane, eliminating the need to consult external monitors. Based on these early prototypes, we are aiming to develop a system that will lower the skill level required for IRE while increasing overall accuracy of needle insertion and, hence, the likelihood of successful treatment.
In minimally invasive surgery, image quality is a critical pre-requisite to ensure a surgeons ability to perform a procedure. In endoscopic procedures, image quality can deteriorate for a number of reasons such as fogging due to the temperature gradient after intra-corporeal insertion, lack of focus and due to smoke generated when using electro-cautery to dissect tissues without bleeding. In this paper we investigate the use of vision processing techniques to remove surgical smoke and improve the clarity of the image. We model the image formation process by introducing a haze medium to account for the degradation of visibility. For simplicity and computational efficiency we use an adapted dark-channel prior method combined with histogram equalization to remove smoke artifacts to recover the radiance image and enhance the contrast and brightness of the final result. Our initial results on images from robotic assisted procedures are promising and show that the proposed approach may be used to enhance image quality during surgery without additional suction devices. In addition, the processing pipeline may be used as an important part of a robust surgical vision pipeline that can continue working in the presence of smoke.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.