NASA’s James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cup/cone interfaces. Prior to integration to the spacecraft bus, the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.
NASA’s James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, the JWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to measure changes in subassembly alignment, including the primary mirror segments, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ISIM.
The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a “toolbox” format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.
NASA’s James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SI), including a guider. The SIs and guider are mounted to a composite metering structure with outer envelope approximate measurements of 2.2x2.2x1.7m. These SI units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as an instrument suite using an Optical telescope element SIMulator (OSIM). OSIM is a high-fidelity, cryogenic JWST simulator that features a ~1.5m diameter powered mirror. The SIs are aligned to the flight structure’s coordinate system under ambient, clean room conditions using opto-mechanical metrology and customized interfaces. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors and metrology in six degrees of freedom. SI performance, including focus, pupil shear, pupil roll, boresight, wavefront error, and image quality, is evaluated at the operating temperature using OSIM. This work reports on the as-run ambient assembly and ambient alignment steps for the flight ISIM, including SI interface fixtures and customization and kinematic mount adjustment. The ISIM alignment plan consists of multiple steps to meet the “absolute” alignment requirements of the SIs and OSIM to the flight coordinate system. In this paper, we focus on key aspects of absolute, optical-mechanical alignment. We discuss various metrology and alignment techniques. In addition, we summarize our approach for dealing with and the results of ground-test factors, such as gravity.
KEYWORDS: Lawrencium, Silicon, Optical alignment, Virtual colonoscopy, James Webb Space Telescope, Metrology, Space telescopes, Telescopes, Finite element methods, Mirrors
While efforts within the optics community focus on the development of high-quality systems and data products, comparatively little attention is paid to their use. Our standards for verification and validation are high; but in some user domains, standards are either lax or do not exist at all. In forensic imagery analysis, for example, standards exist to judge image quality, but do not exist to judge the quality of an analysis. In litigation, a high quality analysis is by default the one performed by the victorious attorney’s expert. This paper argues for the need to extend quality standards into the domain of imagery analysis, which is expected to increase in national visibility and significance with the increasing deployment of unmanned aerial vehicle—UAV, or “drone”—sensors in the continental U. S.. It argues that like a good radiometric calibration, made as independent of the calibrated instrument as possible, a good analysis should be subject to standards the most basic of which is the separation of issues of scientific fact from analysis results.
The James Webb Space Telescope (JWST) is a general astrophysics mission which consists of a 6.6m diameter,
segmented, deployable telescope for cryogenic IR space astronomy (~35K). The JWST Observatory architecture
includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four
science instruments (SI) including a Guider.
The alignment philosophy of ISIM is such that the cryogenic changes in the alignment of the SI interfaces are captured in
the ISIM alignment error budget. The SIs are aligned to the structure's coordinate system under ambient, clean room
conditions using laser tracker and theodolite metrology. The ISIM structure is thermally cycled and temperature-induced
structural changes are concurrently measured with a photogrammetry metrology system to ensure they are within
requirements.
We compare the ISIM photogrammetry system performance to the ISIM metrology requirements and describe the
cryogenic data acquired to verify photogrammetry system level requirements, including measurement uncertainty. The
ISIM photogrammetry system is the baseline concept for future tests involving the Optical Telescope Element (OTE) and
Observatory level testing at Johnson Space Flight Center.
The James Webb Space Telescope is a large infrared observatory with a segmented primary mirror, part of the
Optical Telescope Element (OTE), and four science instruments supported by the Integrated Science Instrument Module
(ISIM). We present the calibration plan for the ISIM Test Platform (ITP) which replicates the ISIM-to-OTE interface: to
calibrate the location and orientation of metrology features at ambient and cryogenic environmental conditions, to verify
that ITP behavior (deflection under load, warm-to-cold alignment shift) can be modeled, predicted, and tested, to prove
that the ITP is stable (upon repeated cryogenic cycles, and after loading and handling), and to calibrate the relationship
between the Master Alignment Target Fixture and the ITP at ambient and cryogenic conditions.
NASA's James Webb Space Telescope (JWST) will be a premier space science program for astrophysics following
launch scheduled for 2014. JWST will observe the early universe, with emphasis on the time period during which the
first stars and galaxies began to form. JWST has a 6.5 m diameter (25 square meters of collecting area), deployable,
active primary mirror operating at cryogenic temperatures.
The James Webb Space Telescope (JWST) is an infrared space telescope scheduled for launch in 2013. JWST has a 6.5 meter diameter deployable and segmented primary mirror, a deployable secondary mirror, and a deployable sun-shade. The optical train of JWST consists of the Optical Telescope Element (OTE), and the Integrated Science Instrument Module (ISIM), which contains four science instruments. When the four science instruments are integrated to ISIM at NASA Goddard Space Flight Center, the structure becomes the ISIM Element. The ISIM Element is assembled at ambient cleanroom conditions using theodolite, photogrammetry, and laser tracker metrology, but it operates at cryogenic temperature, and temperature-induced mechanical and alignment changes are measured using photogrammetry. The OTE simulator (OSIM) is a high-fidelity, cryogenic, telescope simulator that features a ~1.5 meter diameter powered mirror. OSIM is used to test the optical performance of the science instruments in the ISIM Element, including focus, pupil shear, and wavefront error. OSIM is aligned to the flight coordinate system in six degrees of freedom via OSIM-internal cryogenic mechanisms and feedback from alignment sensors. We highlight optical metrology methods, introduce the ISIM and the Science Instruments, describe the ambient alignment and test plan, the cryogenic test plan, and verification of optical performance of the ISIM Element in cryo-vacuum environment.
KEYWORDS: Cameras, Cryogenics, Photogrammetry, James Webb Space Telescope, Distortion, Error analysis, Metrology, Calibration, Received signal strength, Optical alignment
The alignment philosophy of the James Webb Space Telescope (JWST) Integrated Science Instrument
Module (ISIM) is such that the cryogenic changes in the alignment of the science instruments (SIs) and
telescope-related interfaces are captured in an alignment error budget. The SIs are aligned to the structure's
coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The
ISIM structure is thermally cycled and temperature-induced mechanical and structural changes are
concurrently measured to ensure they are within the predicted boundaries.
We report on the ISIM photogrammetry system and its role in the cryogenic verification of the ISIM
structure. We describe the cryogenic metrology error budget and the analysis and testing that was
performed on the ISIM mockup, a full scale aluminum model of the ISIM structure, to ensure that the
system design allows the metrology goals to be met, including measurement repeatability and distortion
introduced from the camera canister windows.
KEYWORDS: Photogrammetry, Nondestructive evaluation, Cameras, Metrology, James Webb Space Telescope, Cryogenics, Temperature metrology, Optical alignment, Space telescopes, Interfaces
The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space
astronomy (~40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science
Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISIM structure must meet
its requirements at the ~40K cryogenic operating temperature.
The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite
metrology. The ISIM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical,
structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important
component in the JWST Observatory alignment plan and must be verified.
We report on the planning for and preliminary testing of a cryogenic metrology system for ISIM based on photogrammetry.
Photogrammetry is the measurement of the location of custom targets via triangulation using images obtained at a suite of digital
camera locations and orientations. We describe metrology system requirements, plans, and ambient photogrammetric
measurements of a mock-up of the ISIM structure to design targeting and obtain resolution estimates. We compare these
measurements with those taken from a well known ambient metrology system, namely, the Leica laser tracker system.
The Solar TErrestrial RElations Observatory (STEREO), the third mission in NASA's Solar Terrestrial Probes program,
was launched in 2006 on a two year mission to study solar phenomena. STEREO consists of two nearly identical
satellites, each carrying an Extreme Ultraviolet Imager (EUVI) telescope as part of the Sun Earth Connection Coronal
and Heliospheric Investigation instrument suite. EUVI is a normal incidence, 98mm diameter, Ritchey-Chrétien
telescope designed to obtain wide field of view images of the Sun at short wavelengths (17.1-30.4nm) using a CCD
detector. The telescope entrance aperture is divided into four quadrants by a mask near the secondary mirror spider
veins. A mechanism that rotates another mask allows only one of these sub-apertures to accept light over an exposure.
The EUVI contains no focus mechanism. Mechanical models predict a difference in telescope focus between ambient
integration conditions and on-orbit operation. We describe an independent check of the ambient, ultraviolet, absolute
focus setting of the EUVI telescopes after they were integrated with their respective spacecraft. A scanning Hartmann-like
test design resulted from constraints imposed by the EUVI aperture select mechanism. This inexpensive test was
simultaneously coordinated with other integration and test activities in a high-vibration, clean room environment. The
total focus test error was required to be better than ±0.05mm. We cover the alignment and test procedure, sources of
statistical and systematic error, data reduction and analysis, and results using various algorithms for determining focus.
The results are consistent with other tests of instrument focus alignment and indicate that the EUVI telescopes meet the
ambient focus offset requirements. STEREO and the EUVI telescopes are functioning well on-orbit.
This paper will discuss the details of the metrology associated with the integration and testing of spacecraft systems and scientific instruments at the NASA Goddard Space Flight Center (NASA GSFC). Specifically, this paper will outline the process for correlating theodolite autocollimation measurements with theodolite coordinate triangulation measurements, laser tracker coordinate measurements, photogrammetry camera system, and other coordinate measurement techniques. For theodolite autocollimation data, NASA GSFC developed a Microsoft Excel-based spreadsheet program to calculate the transformation matrices from reference cube pointing directions into spacecraft coordinates defined by physical features. The autocollimated image return from the mirrored faces of the reference cubes are measured relative to each other and define unit vectors that point in the direction perpendicular to the cube face surface. The roll, zenith, pitch, and yaw are calculated from the direction cosines of the unit vectors that define the directional pointing rotations around coordinate axes. The theodolite-based pointing vectors are then transformed to the spacecraft coordinate system. The Brunson Spatial AnalyzerTM coordinate measuring software program is used to analyze data from theodolites using triangulation on target positions, a laser tracker coordinate measuring system, a photogrammetry system or any other coordinate measuring system. All the coordinate data is tied into theodolite coordinate data by measuring common targets. To correlate theodolite autocollimation on cube faces to the point coordinate location data, one must first measure the test object with the Spatial AnalyzerTM theodolite triangulation coordinate system. From coordinate features, a spacecraft coordinate system is defined by the blueprint design. One of the Spatial AnalyzerTM theodolites is used as the primary reference for the auto-collimation measurements. This ties together the coordinate target point locations to the pointing directions of mirrored surfaces of cubes.
The Refractive Aberrated Simulator/Hubble Opto-Mechanical Simulator (RAS/HOMS) test facility previously located at Ball Aerospace Division in Boulder (BASD), CO will be relocated to NASA Goddard Space Flight Center (GSFC).
This paper will highlight the metrology and test methods used to characterize the facility prior to disassembly as well as assemble and align the facility once it has been moved to GSFC.
The HOMS portion of the facility simulates the mechanical latch mechanisms that hold an axial instrument in alignment with the Hubble Space Telescope (HST) optical path. Two sets of three latches must be aligned in position on the HOMS structure to match that of the two axial bays in HST.
The RAS portion of the facility is a refractive optical system that simulates the aberrations in HST's optical telescope assembly. Each mount and lens must be properly aligned within the RAS system in order to accurately simulate the aberrations of HST's optical system. The optical axis of the RAS system must be brought into alignment with the optical axis of HOMS system.
Photogrammetry, theodolite auto-collimation data, theodolite coordinate data, and laser tracker coordinate data were used to characterize the system prior to disassembly. The same data will be used to bring the RAS/HOMS system as close to the original alignment as possible.
The Cosmic Origins Spectrograph (COS) will be the most sensitive UV spectrograph to be flown aboard the Hubble Space Telescope. The COS FUV and NUV channels will provide high sensitivity at resolution greater than 20000 over wavelengths ranging from 115nm to 320nm. We present a brief review of the instrument design, results from the optical testing of FUV gratings and predicted on orbit performance.
The Cosmic Origins Spacecraft (COS) will be the most sensitive UV spectrograph to be flown aboard the Hubble Space Telescope. The COS FUV and NUV channels will provide high sensitivity at resolution greater than 20000 over wavelengths ranging from 115 nm to 320 nm. We present a brief review of the instrument design and grating test plan as well optical test results for the first FUV grating delivered.
The FUSE, scheduled for a summer 1999 launch, is an astrophysics satellite designed to provide high spectral resolving power over the interval 90.5-118.7 nm. The FUSE optical path consists of four co-aligned, normal incidence, off-axis parabolic primary mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographic gratings and delay line microchannel plate detectors. The spectrograph comprises the upper half of the instrument structure, and was internally aligned prior to delivery to the integration team.
The FUSE, successfully launched in June 1999, is an astrophysics satellite designed to provide high spectral resolving power over the interval 90.5-118.7 nm. The FUSE optical path consists of four co-aligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographic gratings and delay line microchannel plate detectors. We describe the hardware and methods used for the optical 'end- to-end' test of the FUSE instrument during satellite integration and test. Cost and schedule constraints forced us to devise a simplified version of the planned optical test which occurred in parallel with satellite thermal- vacuum testing. The optical test employed a collimator assembly which consisted of four co-aligned, 381 mm diameter Cassegrain telescopes positioned above the FUSE instrument, providing a collimated beam for each optical channel. A windowed UV light source, remotely adjustable in three axes, was mounted at the focal plane of each collimator. Problems with the UV light sources, including high f-number and window failures, were the only major difficulties encountered during the test. The test succeeded in uncovering a significant problem with the secondary structure used for the instrument cavity and, furthermore, showed that the mechanical solution was successful, the hardware was also used extensively for simulations of science observations, providing both UV light for spectra and visible light for the fine error sensor camera.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.