This paper describes a detailed study of spectral and time-resolved photoprocesses in human platelets and their complexes with platinum (Pt) nanoparticles (NPs). Fluorescence, quantum yield, and platelet amino acid lifetime changes in the presence and without femtosecond ablated platinum NPs have been studied. Fluorescence spectroscopy analysis of main fluorescent amino acids and their residues (tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe)) belonging to the platelet membrane have been performed. The possibility of energy transfer between Pt NPs and the platelet membrane has been revealed. Förster Resonance Energy Transfer (FRET) model was used to perform the quantitative evaluation of energy transfer parameters. The prospects of Pt NPs usage deals with quenching-based sensing for pathology’s based on platelet conformations as cardiovascular diseases have been demonstrated.
This paper performs detailed study of Raman scattering for platelets mixed with gold nanoparticles in presence with R6G molecules on quartz surface. Spectral properties of main spectral bands corresponding to proteins and dye in the complexes with gold nanoparticles have been performed. The perspectives SERS for applications in modern physics and biophotonics have been shown. Results of the study can be applied for SERS detection and investigation of blood components such as cells and platelets. Paper describes characteristic maxima of different cell components and its identification in platelets.
The article presents the results of the SERS study of fluorine-containing dye 6G (R6G) adsorbed onto quartz surfaces modified with gold nanoparticles (NPs). A new technique for quartz glass modifying with hydrosols of gold NPs of various shapes has been developed. The possibilities of its application to implement SERS effect for R6G molecules have been shown. In this work, we synthesized hydrosols of spherical gold NPs (nanospheres) and rod-shaped NPs (nanorods (NRs)) and studied their optical and morphological properties. The SERS spectra of R6G molecules on NP modified quartz glasses have been obtained as well as the SERS enhancement factor has been calculated.
Optical properties (reflection, refractive index, real and imaginary part of permittivity function) of rough titanium surfaces fabricated by anodizing method at different anodic voltage have been studied. It is shown that a negative region in the visible wavelength range is observed on a rough titanium surface in the refractive index spectrum; its minimum appeared to be red-shifted shifted with surface roughness increase. These optical-nonlinear effects are studied by means s- and p-polarized light reflection coefficients spectra and permittivity spectra registration. It is also shown that the generation of surface plasmon oscillations in the visible spectral region on the rough titanium surface is possible. Excitation of surface plasmons is found to be accompanied by redistribution of the incident electromagnetic energy on the surface and leads to various nonlinear effects including negative values of the refractive index.
Paper performs results of SERS-active surfaces fabrication for Raman bacterial cells analysis. Based on FDTD simulation, the synthesis of colloidal gold nanoparticles (NPs) with the size range of 10 – 100 nm has been performed by the following methods: a) femtosecond laser ablation of a plate in a liquid; b) chemical reduction from tetrachloroauric acid trihydrate (HAuCl4). Optimal sizes and shapes of the particles with a maximum of plasmon absorption in the range 500 – 800 nm have been determined by numerical simulation. For NPs deposited on quartz glass with rodamine 6G (R6G) and E. Coli bacterial cells, SERS solutions have been tested.
This paper describes detailed study of single human platelet and can be used for rapid and early structure changes and biomarkers identification in individuals with cardiovascular decease (CCD) pathology in vitro. The obtained data include analyzed Surface-enhanced Raman spectra (SERS) of human platelets taken from healthy individuals and individuals with cardiovascular pathology. Paper describes characteristic maxima of different cell components and its changes in platelets.
This paper describes detailed study of photoprocesses in bovine serum albumin, silver nanoparticles and Rhodamine 6G (R6G) dye complexes using plasmon-enhanced fluorescence effect. Fluorescence spectroscopy analysis of bovine serum albumin molecules in systems doped with silver nanoparticles and rhodamine 6G has been performed. The perspectives of plasmon-controlled photoprocesses in the model complexes for applications of modern physics and biophotonics were shown. Investigations both tryptophan and tyrosine fluorescence of BSA in the complex has been investigated. Experimental concentrations of protein, dye and nanoparticles at which a stable plasmon-enhanced fluorescence effect was observed. Results of the study can be applied for labeling and configuring drug delivery systems for investigation of small blood components investigation such as platelets.
This paper perform the results of studies on the development of a simple methodology for creating hydrosol-modified silver and gold nanoparticles with a size of 44 nm (silver) and 54 nm (gold) quartz surfaces for sensory purposes. Proposed surfaces is able to perform the effect of Surface-enhanced Raman scattering (SERS) of light by dye molecules of Rhodamine 6G. It was shown that the order of amplification of the Raman signal by surface plasmons of silver and gold nanoparticles for Rhodamine 6G dye molecules can reach orders of magnitude 102 times. A method for the controlled synthesis of silver hydrosols by methods of reducing sodium salt AgNO3 with sodium citrate and femtosecond laser ablation for gold is proposed. The prospects of such systems for obtaining spectra of the molecular structure of dyes are shown. The results of this work, in the future, can be used to analyze chemical compounds of low concentrations, macroscopic biological objects like bacterial cells and blood components.
In this paper we perform results of conformational analysis of septic human serum albumin (HSA) carried out by Raman spectroscopy (RS), infrared (IR) spectroscopy and fluorescent spectroscopy. The main vibrational groups were identified and analyzed for septic HSA and its health control. Comparison between Raman and IR results were done. Fluorescent spectral changes of Trp-214 group were analyzed. Application of Raman, IR spectroscopy, fluorescent spectroscopy for conformational changes study of HSA during pathology were shown.
The study of the luminescence of CdZnSeS / ZnS quantum dots (QDs) absorbed on the rough surface of a silver film, including the energy transfer between human serum albumin molecules, isolated from the blood plasma of healthy and infected with sepsis patients, was performed by spectral-kinetic methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.