Dual-energy imaging can enhance lesion conspicuity. However, the conventional (fast kilovoltage switching)
dual-shot dual-energy imaging is vulnerable to patient motion. The single-shot method requires a special design
of detector system. Alternatively, single-shot bone-suppressed imaging is possible using post-image processing
combined with a filter obtained from training an artificial neural network. In this study, the authors investigate
the general properties of artificial neural network filters for bone-suppressed digital radiography. The filter
properties are characterized in terms of various parameters such as the size of input vector, the number of hidden
units, the learning rate, and so on. The preliminary result shows that the bone-suppressed image obtained from
the filter, which is designed with 5,000 teaching images from a single radiograph, results in about 95% similarity
with a commercial bone-enhanced image.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.