The geoCARB sensor uses a 4-channel push broom slit-scan infrared imaging grating spectrometer to measure the absorption spectra of sunlight reflected from the ground in narrow wavelength regions. The instrument is designed for flight at geostationary orbit to provide mapping of greenhouse gases over continental scales, several times per day, with a spatial resolution of a few kilometers. The sensor provides multiple daily maps of column-averaged mixing ratios of CO2, CH4, and CO over the regions of interest, which enables flux determination at unprecedented time, space, and accuracy scales. The geoCARB sensor development is based on our experience in successful implementation of advanced space deployed optical instruments for remote sensing. A few recent examples include the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on the geostationary Solar Dynamics Observatory (SDO), the Space Based Infrared System (SBIRS GEO-1) and the Interface Region Imaging Spectrograph (IRIS), along with sensors under development, the Near Infared camera (NIRCam) for James Webb (JWST), and the Global Lightning Mapper (GLM) and Solar UltraViolet Imager (SUVI) for the GOES-R series. The Tropospheric Infrared Mapping Spectrometer (TIMS), developed in part through the NASA Instrument Incubator Program (IIP), provides an important part of the strong technological foundation for geoCARB. The paper discusses subsystem heritage and technology readiness levels for these subsystems. The system level flight technology readiness and methods used to determine this level are presented along with plans to enhance the level.
Direct measurements of energetic neutral atoms (ENA) and ions have been obtained with the cooled solid state detectors on the low-altitude (220 km) three-axis stabilized S81-1/ stimulated emissions of energetic particles (SEEP) satellite and on the spinning 400 km x 5.5 Re (where Re is Earth radii) Combined Release and Radiation Effects Satellite (CRRES). During magnetic storms ENA and ion precipitation (E>10 keV) are evident over the low-altitude equatorial region based on data from the SEEP (ONR 804) spectrometers and CRRES ion mass spectrometer (IMS-HI) (ONR 307-8-3) ion composition and ENA instrument. The MS-HI neutral atom spectrometer covers the energy range from 20 to 1500 keV with a geometrical factor of 10-3 cm2 sr and uses a 7-kG magnetic field to screen out protons less than about 50 MeV. During the strong magnetic storm of 24 March 1991 the first ENA and ion mass composition measurements were obtained of ring current partides below the inner belt and these fluxes are compared to the MS-HI flux measurements in the ring current. Recently, an advanced spectrometer, the Source/Loss-cone Energetic Particle Spectrometer (SEPS), has been developed to image electrons, ions, and neutrals on the despun platform of the POLAR satellite (~1.8 x 9 Re) for launch in the mid 1990s as part of NASA's International Solar Terrestrial Physics/Global Geospace Science (ISTP/GGS) program. To improve particle imaging by increasing sensor spatial resolution and sensitive area, a 256-element solid state pixel array having 6.25 cm2 area has been developed for SEPS along with three new low-power application-specific integrated circuit (ASIC) microcircuits.
Direct measurements of energetic neutral atoms (ENA) and ions have been obtained with the cooled solid state detectors on the low altitude (220 km) three-axis stabilized S81-1/SEEP satellite and on the spinning 400 km X 5.5 Re CRRES satellite. During magnetic storms ENA and ion precipitation (E > 10 keV) is evident over the equatorial region from the LE spectrometer on the SEEP payload (ONR 804). The spinning motion of the CRRES satellite allows for simple mapping of the magnetosphere using the IMS-HI (ONR 307-8-3) neutral spectrometer. This instrument covers the energy range from 20 to 1000 keV and uses a 7 kG magnetic field to screen out protons less than about 50 MeV. ENA and the resulting low- altitude ion belt have been observed with the IMS-HI instrument. Recently, an advanced spectrometer (SEPS) has been developed to image electrons, ions, and neutrals on the despun platform of the POLAR satellite (approximately 1.8 X 9 Re) for launch in the mid-90's as part of the NASA ISTP/GGS program. For this instrument a 256 element solid state pixel array has been developed that interfaces to 256 amplifier strings using a custom 16 channel microcircuit chip. In addition, this instrument features a motor controlled iris wheel and anticoincidence electronics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.