The authors introduce an algorithm to estimate the spatial dose distributions in computed tomography (CT)
images. The algorithm calculates dose distributions due to the primary and scattered photons separately. The
algorithm only requires the CT data set that includes the patient CT images and the scanner acquisition parameters.
Otherwise the scanner acquisition parameters are extracted from the CT images. Using the developed
algorithm, the dose distributions for head and chest phantoms are computed and the results show the excellent
agreements with the dose distributions obtained using a commercial Monte Carlo code. The developed algorithm
can be applied to a patient-specific CT dose estimation based on the CT data.
New light-emitting PCPP derivatives, poly(4,4-bis{4-[(2-ethylhexyl)oxy]phenyl}-4H-cyclopenta[def]phen- anthrene)
(BEHP-PCPP), with stabilized blue emission is reported. The OLED with the configuration of ITO/PEDOT:PSS/BEHPPCPP/
Ca/Al generates EL emission with maximum peak at 430 nm, low turn-on voltage (9V), and CIE coordinates (x
= 0.19, y = 0.15) for the blue color without any filtering. The maximum brightness of the OLEDs using BEHP-PCPP
was 1034 cd/m2 at 15 V. The maximum luminescence efficiency of the polymer LEDs with BEHP-PCPP was 0.21
cd/A at 617 mA/cm2.
New fluorin-containing electroluminescent polymers in vinylene units, poly(2-dimethyldodecylsilyl-p-phenylenedifluorovinylene)
(DMDS-PPDFV), have been synthesized by GILCH polymerization. This polymer has been used
as the electroluminescent layers in light-emitting diodes (LEDs) (ITO/PEDOT/polymer/Al). DMDS-PPDFV shows
PL around λmax = 455 nm (exciting wavelength, 365 nm) and green EL around λmax =489nm. Attachment of two the
fluoro groups were introduced to poly(2-dimethydodecylsilyl-1,4-phenylenevinylene) (DMDS-PPV) to give DMDSPPDFV
in an attempt to increase the electron affinity of the parent polymer.
Conjugated polymers with a stabilized blue emission are of importance for the realization of full-color displays using polymer light-emitting diodes. We report a new class of blue-emitting polymers utilizing a new back-bone, poly(2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta [def] phenanthrene)) (PCPP). This material emits a stabilized, efficient blueelectroluminescence(EL) without exhibiting any peak in the long wavelength region (green region) even after prolonged annealing for 18 hours at an elevated temperature of 150°C in air. This attributes to the chemical structure of this new polymer. The backbone of PCPP intrinsically inhibits the formation of the keto-defects mainly responsible for the degradation to green color in typical poly(fluorine) type materials, thereby stabilizing the blue EL emission in the devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.