New applications of optical single-sideband modulators incorporating multimode interference (MMI) structures have been investigated. These devices have been fabricated using recently developed polymer materials and advanced polymer modulator technologies. We have studied photonic time-stretching, for the purpose of high-speed analog-to-digital conversion, using the single-sideband modulator. This implementation has been shown to almost completely eliminate the power penalty due to the different chromatic dispersion effects, in upper and lower sidebands, without bandwidth limitations. We also have designed a photonic RF phase shifter array based on the single-sideband modulator structure. In order to improve the performance, this integrated planar device has incorporated a novel balancing arm design, low crosstalk optical waveguide crossings and S-bend waveguide structures. Measurements of this configuration showed that our four outputs were independent and had highly linear RF phases with negligible RF power fluctuation. These pulsed and CW applications demonstrate the capability and complexity possible using polymer electro-optics and are expected to significantly contribute to future optical communication systems and to optical/microwave beam steering and transmission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.