An advantage of using additive manufacturing (AM) processes as opposed to conventional fabrication methods is that the additional degrees of freedom in design allow compact and at the same time lightweight components to be manufactured. In addition, AM reduces the material consumption, resulting in a more cost efficient production. Among others, the field of laser development benefits from the progressive implementation of AM-related opportunities. However, this integration is mostly limited to single components. In contrast, we present a compact, lightweight solid-state laser oscillator system for low-power applications based on additively manufactured optomechanical components via Fused Filament Fabrication (FFF). The laser system is based on a Nd:YVO4-crystal pumped externally with a fiber-coupled laser diode at a wavelength of 808nm and a maximum output power of 3 W. The commercial optical components, such as lenses and the crystal, are firmly embedded via FFF in quasi-monolithic optomechanics. Thereby, they are fixed at their position and thus secured against misalignment. Furthermore, sensor technology for temperature monitoring is implemented into the structure. The possibility of the FFF process to work with different materials in parallel is used here. This multi-material printing approach enables the use of the appropriate polymer for the individual mechanical and thermal requirements for any structural part. The thermal stability of the printed structures is evaluated to ensure damage-free operation of the 3D-printed polymer optomechanics. Furthermore, output power, optical-to-optical efficiency, beam pointing, and spatial beam profile of the laser system are measured for several on- and off-switching cycles as well as for long-term operation.
The use of additive manufacturing methods in research and industry has led to the possibility of designing more compact, light and low-cost assemblies. In the field of laser development, new opportunities resulting from additive manufacturing have rarely been considered so far. We present a compact, lightweight solid-state amplifier system for low-power applications where the optomechanical components are manufactured completely additive via Fused Filament Fabrication (FFF). The amplifier system is based on a Nd:YVO4-crystal pumped with an external, fiber-coupled diode at a wavelength of 808nm and a maximum output power of 3 W. The seed source is a Nd:YVO4-crystal based solid-state laser with an emission wavelength of 1064 nm. The commercial optical components, such as lenses and crystal, are firmly imprinted via FFF in the optomechanics and thus secured against misalignment. Additionally, sensor technology for temperature measurement is implemented into the devices. The use of FFF, in which the components are printed from polymers, results in a lightweight yet stable construction. We have shown, that optical components can be imprinted without adding mechanical stress. To increase the mechanical and thermal robustness of the system different types of polymers as well as post process treatments are tested and the use of Laser Metal Deposition for this application is investigated. The thermal stability of the printed structures is evaluated to determine the maximum power level of the system without damaging the polymer-optomechanics. Furthermore, output power, optical-to-optical efficiency, beam pointing, and beam shape are measured for several on- and off-switching processes as well as long-term operation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.