Precise alignment of laser beams used in heterodyne interferometry is vital and necessary to the precision, accuracy, and quality of the measurement, but off the shelf-based breadboard setups have a large physical footprint and many components that can introduce unwanted noise. Our lab creates optomechanical accelerometer devices including a fused silica resonator with a 5Hz natural frequency and uses a heterodyne displacement interferometer to readout the position of the test mass, which can then be used to determine the acceleration of the device. A novel compact fiber injector system design is presented here that reduces the footprint of the fiber collimator input of the heterodyne interferometer by an order of magnitude from a breadboard setup, down to 24 x 16 x 19 mm. This new injector system integrates both fibers of different frequencies directly onto the mount with the resonator, increasing stability and reducing entry points for vibrational noise while minimizing the optical path length difference between beams. Each beam can then be independently tilted and de-centered to maximize the fringe visibility at the output of the interferometer, using spring-loaded adjustment screws and secured in place with locking screws. An accelerometer using these injectors measured a displacement of 10-9 m/√Hz at 10-2 Hz in air with the test mass anchored, nearly identical to the previous breadboard setup while being much more compact and portable. I will present the design, integration onto an accelerometer, and the initial acceleration noise measurements taken using these fiber injector systems.
LISA is a space-based gravitational wave observatory aimed at detecting gravitational waves in the frequency range of 0.1 mHz to 0.1 Hz. The observatory is composed of three spacecraft, each separated by 2.5 million km in an equilateral triangle formation, trailing the Earth in a heliocentric orbit. One of the many crucial components to the mission is the LISA telescope, a bidirectional component used to expand an outgoing laser beam to the far spacecraft as well as compress a large incoming beam to a diameter of a few mm at the optical bench. Since the telescope is in the path of the long-baseline interferometer, its structure must be dimensionally stable at the pm/√Hz level at mHz frequencies. A way to measure the stability of the LISA telescope is with a compact optical truss interferometer (OTI), consisting of three Fabry-Perot cavities mounted along the telescope to monitor structural distortions over time. All three cavities are operated with a common laser source, and each cavity is equipped with an acousto-optic modulator to shift the nominal laser frequency as well as an electro-optical modulator to modulate the laser phase for Pound-Drever-Hall locking. Variations in each cavity’s length create variations in their corresponding laser frequency, which can be measured against a reference frequency that is locked to an external ultra-stable cavity. We will present the design and preliminary results in the fabrication and testing of firstgeneration OTI prototypes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.