We report here the fabrication and characterization of solid-state conducting polymer actuators. The electrochemical activity of polyaniline (PANI) thin film coated with solid-state polyelectrolyte is very similar to the polyaniline thin film in an aqueous solution. The solid-state actuator is adhered to a lever arm of a force transducer and the force generation is measured in real time. The force generated by the actuator is found to be length dependent. However, the overall torque generated by the actuators with different lengths remains essentially the same. The effect of stimulation signals such as voltage, and current, on the bending angle and displacement is also studied using square wave potential.
Using subpicosecond transient absorption spectroscopy, we have investigated the primary photoexcitations in thin films and solution of several phenylene-based conjugated polymers and an oligomer. We identify two features in the transient absorption spectra and dynamics that are common to all of the materials which we have studied from this family. The first spectral feature is a photoinduced absorption (PA) band peaking near 1 eV which has intensity-dependent dynamics which match the stimulated emission dynamics exactly over two orders of magnitude in excitation density. This band is associated with singlet intrachain excitons. The second spectral feature (observed only in thin films and aggregated solutions) is a PA band peaking near 1.8 eV, which is longer-lived than the 1 eV exciton PA band, and which has dynamics that are independent (or weakly-dependent) on excitation density. This feature is attributed to charge separated (interchain) excitations. These excitations are generated through a bimolecular process. By comparing to samples in which charged excitations are created deliberately by doping with C6O, we assign these secondary species as bound polarons.
We report on the optical characterization of a series of multi-layered organic superlattices made by polyelectrolyte self-assembly. Using a high molecular weight, water-soluble, anionic form of poly-phenylene vinylene, self-assembled films can be formed which show high photoluminescence quantum efficiency (QE). A dramatic red shift of the luminescence and increase in QE is observed as additional PPV layers are added. We attribute the red shift and increasing QE to a changing conformation of the polymer chains as the superstructure is assembled, together with efficient Frster energy transfer in a preferred direction away from the substrate toward layers with longer effective conjugation length. Upon adding a C60 top layer, the luminescence spectrum is strongly quenched. We attribute this to charge transfer of from the top-most polymer layer to the C60 layer. We discuss the possibilities of exploiting this directional charge transfer in an ultrafast holographic device along with other optics for increasing the temporal diffraction efficiency of polymer-based mediums.
We present our recent advances toward the development of high-performance solid-state optical limiting devices using reverse saturable absorption (RSA) dyes doped into optical host materials. Femtosecond transient absorption spectroscopy was employed to determine both the spectral regions of strong RSA, and the singlet-triplet excited-state dynamics. The optical limiting in the visible spectrum in both metallo-phthalocyanines and metallo-porphyrins is due to a combination of singlet and triplet RSA. Optical limiting performance was studied for RSA dyes in dual tandem limiters (both in solution and solid-state). Our best results in the solid-state yielded an attenuation of 400X, and a damage threshold of up to several mJ at f/5 focusing. The optical limiting at f/5 is further enhanced, particularly in the solid-state, by self-defocusing thermal nonlinearities.
Holographic recording has been demonstrated in conducting polymer/C60 blends. These materials allow ultrafast holographic recording and the ability to tailor the decay dynamics of the recorded hologram. Diffraction efficiencies up to 1.6 percent have been measured in these materials for gratings recorded with individual laser pulses. Results are presented that demonstrate that an improved signal-to-noise ratio is obtained when holographic detection is used to observe the dynamics of photo-induced absorption.
We report the fabrication and properties of three-, four-, and five-layer electroluminescent devices fabricated from light emissive N-based heterocyclic novel polymeric derivatives of PPP and PPV with which they are isoelectronic. They include poly(pyridine vinylene), (PPyV), and poly(2,5-dihexadecanoxy phenylene vinylene pyridyl vinylene), (PPV.PPyV). Some of the devices operate in both forward and reverse bias modes thus enabling operation in an ac mode. One type of device has the general construction: M/I/polymer/I/ITO where M equals Cu or Al, I equals polyaniline (emeraldine base, EB) or poly(3-hexylthiophene), (P3HT), and polymer equals PPV.PPyV. Under low frequency ac (sinusoidal) driving, light pulses with twice the driving frequency were observed in a device where M equals Al or Cu, I equals EB and polymer equals PPV.PPyV; and in a device where M equals Al, I equals P3HT and polymer equals PPV.PPyV. In the latter device the electroluminescence spectrum in the reverse bias mode differed from that in the forward bias mode. It was also shown that blends of PPyV in Nylon 6,6 exhibit a lower operating voltage than the pure polymer.
Symmetrically configured ac light-emitting (SCALE) devices based on conjugated polymers utilizing indium-tin oxide (ITO) and aluminum as electrodes have been demonstrated recently. Here we report the fabrication of SCALE devices using a more stable high workfunction metal, such as gold, as a charge (both electron and hole) injection electrode. Also, a variation of such devices in which the electroluminescent polymer, instead of being separated from the insulating polymer, is dispersed in the insulating polymer to form a unified emitter-insulator is reported. These devices emit light in both forward and reverse dc bias with symmetric current- voltage characteristics. Under low frequency ac (sinusoidal) driving voltage, light pulses with double the driving frequency are observed. A model is proposed to account for the device operation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.