Optical vector vortex beams provide additional degrees of freedom for spatially distinguishable channels in data transmission. Although several coherent light sources carrying a topological singularity have been reported, it remains challenging to develop a general strategy for designing ultra-small, high-quality photonic nanocavities that generate and support optical vortex modes. Here we demonstrate wavelength-scale, low-threshold, vortex and anti-vortex nanolasers in a C5 symmetric optical cavity formed by a topological disclination. Various photonic disclination cavities are designed and analyzed using the similarities between tight-binding models and optical simulations. Unique resonant modes are strongly confined in these cavities, which exhibit wavelength-scale mode volumes and retain topological charges in the disclination geometries. In the experiment, the optical vortices of the lasing modes are clearly identified by measuring polarization-resolved images, Stokes parameters and self-interference patterns. Demonstration of vortex nanolasers using our facile design procedure will pave the way towards next-generation optical communication systems.
Topological photonics attracts attention as a fundamental framework for robust manipulation of light. Combined with an optical gain, active topological cavities hold special promise for a design of high-performance nanolasers. In this talk, we present two types of novel topological resonant modes, multipolar lasing modes from topological corner states and ultralow-threshold lasing modes using super-bound states in the continuum, for the demonstration of low-threshold lasing.
Recent developments in the physics of Mie-resonant high-index dielectric nanostructures suggested a promising pathway to improve efficiencies of the nonlinear light conversion beyond the limits imposed by plasmonics. Here, we employ the concept of bound states in the continuum to experimentally demonstrate a sharp enhancement of the second-harmonic generation efficiency at localized states formed via destructive interference of two leaky modes. For an AlGaAs subwavelength disk with optimized parameters, pumped with a structured light and placed on an engineered multilayered substrate, we observe the record-high conversion efficiency compared to the previous demonstrations with isolated subwavelength resonators.
We report on the experimental and numerical results for the second-harmonic generation spectroscopy by doughnut-shaped cylindrical vector beams of azimuthal and radial polarizations in individual subwavelength AlGaAs particles, which support multipolar Mie resonances at the fundamental and double frequencies. We observe high-Q resonant optical modes associated with bound states in the continuum for the azimuthally polarized pump beam with the record-high efficiency (0.1%) of the up-conversion nonlinear optical process due to a strong electromagnetic field confinement. Our findings provide an important step towards a design of resonant subwavelength all-dielectric nanostructures with tailored efficiencies of nonlinear optical phenomena at the nanoscale.
Atomically-thin two-dimensional (2D) materials including graphene and transition metal dichalcogenide (TMD) atomic layers (e.g. Molybdenum disulfide, MoS2) are attractive materials for optoelectronic and plasmonic applications and devices due to their exceptional flexural strength led by atomic thickness, broadband optical absorption, and high carrier mobility. Here, we show that crumple nanostructuring of 2D materials allows the enhancement of the outstanding material properties and furthermore enables new, multi-functionalities in mechanical, optoelectronic and plasmonic properties of atomically-thin 2D materials. Crumple nanostructuring of atomically thin materials, graphene and MoS2 atomic layers are used to achieve flexible/stretchable, strain-tunable photodetector devices and plasmonic metamaterials with mechanical reconfigurability. Crumpling of graphene enhances optical absorption by more than an order of magnitude (~12.5 times), enabling enhancement of photoresponsivity by 370% to flat graphene photodetectors and ultrahigh stretchability up to 200%. Furthermore, we present a novel approach to achieve mechanically reconfigurable, strong plasmonic resonances based on crumple-nanostructured graphene. Mechanical reconfiguration of crumple nanostructured graphene allows wide-range tunability of plasmonic resonances from mid- to near-infrared wavelengths. The mechanical reconfigurability can be combined with conventional electrostatic tuning. Our approach of crumple nanostructuring has potential to be applicable for other various 2D materials to achieve strain engineering and mechanical tunability of materials properties. The new functionalities in mechanical, optoelectronic, plasmonic properties created by crumple nanostructuring have potential for emerging flexible electronics and optoelectronics as well as for biosensing technologies and applications.
All-optical operation holds promise as the future of computing technology, and key components will include miniaturized waveguides (WGs) and optical switches that control narrow bandwidths. Nanowires (NWs) offer an ideal platform for nanoscale WGs, but their utility has been limited by the lack of comprehensive coupling scheme and of band selectivity. Here, we introduce a NW geometric superlattice (GSL) that allows controlled, narrow-band guiding in Si NWs through direct coupling of a Mie resonance with a bound guided state (BGS). Periodic diameter modulation in a GSL creates a Mie-BGS coupled-excitation that manifests as a scattering dark state with a pronounced scattering dip in the Mie resonance envelope. The frequency of the coupled mode, tunable from the visible to near-infrared, is determined by the pitch of the GSL and exhibits a Fourier-transform limited bandwidth. Using a combined GSL-WG system, we demonstrate spectrally-selective guiding and optical switching at telecommunication wavelengths, highlighting the potential to use NW GSLs for the design of on-chip optical components.
To exploit photonics technologies for in vivo studies in life science and biomedicine, it is necessary to efficiently deliver light energy to the target objects embedded deep within complex biological tissues. However, light waves diffuse randomly inside complex media due to multiple scattering, and only a small fraction reaches the target object. Here we present a method to counteract the random diffusion and to focus ‘snake-like’ multiple-scattered waves to the embedded target. To realize this, we experimentally identified time-gated reflection eigenchannels that have extraordinarily large reflectance at a specific flight time where most of the multiple-scattered waves have interacted with the target object. By injecting light to these eigenchannels, we achieved more than 10-fold enhancement in light energy delivery compared to ordinary wave diffusion cases. This method works up to depths of approximately 2 times the transport mean free path at which target objects are completely invisible by ballistic optical imaging. This work will lay a foundation for enhancing the working depth of imaging, sensing, and light stimulation.
We investigate optical characteristics of the ultra-small zero-cell cavities that consist of two, four and three shifted lattice
points in square- and triangular-lattice photonic crystal structures. Mode volumes and Q factors of these cavities are
systematically studied using three-dimensional finite-difference-time-domain simulation. In particular, an extremely
small mode volume of ~0.015 μm3 [~1.5 (λ/2nslab)3] is obtained in the triangular-lattice three-hole-shifted cavity. In an
experiment, we demonstrate optically pumped room-temperature lasing action with a low lasing threshold of ~130 μW in
a square-lattice two-hole-shifted cavity. The operation of this ultra-small laser is unambiguously confirmed by the
numerical simulation based on the actual fabricated structures.
Recent progress toward wavelength-scale photonic crystal lasers is summarized. To realize the ultimate laser, one needs to have a wavelength-scale photonic crystal cavity that is lossless. As a candidate for this ultimate laser, the two-dimensional unit-cell photonic crystal laser compatible with current injection is proposed. Experimental demonstration of the low-threshold two-dimensional photonic crystal lasers in the triangular lattice and the square lattice will be discussed. The very high quality factor in excess of 1,000,000 is theoretically predicted from the wavelength-scale resonator supporting the whispering-gallery-like photonic crystal mode.
Recent progress toward wavelength-scale photonic crystal lasers is summarized. Lasing characteristics of two possible configurations of the unit-cell photonic crystal laser that has a central node through which current could be supplied. The very high quality factor in excess of 100,000 is theoretically expected from a square lattice unit-cell photonic crystal resonator. Applications of photonic crystals to other forms of active devices are also briefly discussed.
Novel square lattice photonic band gap lasers are realized at room temperature from single cell photonic crystal slab micro-cavities fabricated in InGaAsP materials emitting at 1.5 micrometers . This single cell photonic band gap laser operates in the new class of two-dimensional mode to be classified as the smallest possible whispering gallery mode with genuine energy null at the center. The low-loss nondegenerate mode with modal volume of 0.1 ((lambda) /2)3 demonstrates a spectrometer-limited below-threshold quality factor > 2000 and a theoretical quality factor of > 10,000. Threshold incident peak pump power of 0.8 mW is achieved from this whispering-gallery-type laser mode. The other class of photonic crystal lasers is also observed outside the photonic band gap of the square lattice, operating in the mode characteristically one-dimensional.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.