Novel hybrid reflection zone plates as dispersive elements will allow time-resolved Near Edge X-ray Absorption Fine Structure (tr-NEXAFS) studies in a wide photon energy range from 100 – 1500 eV. We describe two tr-NEXAFS setups using a laser produced plasma (LPP) as well as a high harmonics generation (HHG) source.
Laboratory based laser driven short pulse X-ray sources like laser produced plasmas (LPP) and high harmonic generation (HHG) exhibit a great potential for spectroscopy in the soft X-ray range. These sources are complementary to large scale facilities like synchrotrons or free electron lasers. For applications of LPP or HHG sources for time-resolved X-ray absorption spectroscopy in the water window or beyond a high photon flux is crucial. The available photon flux strongly depends on energy, pulse duration and repetition rate of the pump laser. Depending on the experimental needs in timeresolved experiments pulse durations of the X-ray pulse ranging from nanoseconds to sub-femtoseconds are required. In our contribution we will present a highly brilliant LPP source emitting soft X-rays in the photon energy range between 50 and 1500 eV based on CPA and thin disk laser technology as well as the high average power thin disk laser based OPCPA system for high photon flux HHG. In addition we present a new generation of reflection zone plates on spherical substrates, that promises a remarkable high resolution over a wide spectral range making it an ideal and highly efficient diffractive optic for time-resolved NEXAFS experiments in the lab.
We present advanced instrumentation for the investigation of thin organic films offered by a laboratory X-ray absorption fine structure (XAFS) spectrometer for the soft X-ray range. The transmission spectrometer is based on a laser-produced plasma source in combination with a twin-arm reflection zone plate spectrometer. The efficiency and stability of the spectrometer allow for single shot measurements within 500 ps with a resolving power of E/ΔE ~ 900 in a range between 200 eV and 1300 eV. Through the implementation of an optical pump beam, also transient absorption measurements can be performed. The merits of the spectrometer are demonstrated through the investigation of poly[(9,9-dioctylfluorenyl- 2,7-diyl)-alt-co-(1,4-benzo-{2,1‘,3}-thiadiazole)] (F8BT), a polyfluorene copolymer. Transient optical pump soft X-ray probe spectroscopy with 500 ps time resolution detects changes in the C K edge spectrum which can be attributed to the lowest unoccupied molecular orbitals of the molecules in the benzothiadiazole unit.
Two OPCPA-systems at central wavelengths of 2.1 μm (in operation) and 3.1 μµm (under construction) provide pulses with a temporal duration of 4 cycles at a pulse repetition rate of 10 kHz and an average power of about 30 W. Both systems feature a single pump laser design with a powerful thin disk Yb:YAG pumplaser. Concept, simulation and beam emission characteristics are discussed. Flux levels in high harmonic generation of ~109 photons/eV/s @ 150 eV, ~107 photons/eV/s @ 350 eV and ~106 photons/eV/s @ 450 eV have been determined with absolutely calibrated measurement tools. An IR-pump - soft X-ray scattering probe experiment at the Gd N-edge (150 eV) employing the transversal magnetic optical Kerr effect (TMOKE) investigates dynamics of optical magnetic switching and serves as a benchmark for future studies.
X-ray microscopy has proven its advantages for resolving nanoscale objects. High Harmonic Generation (HHG) sources allow performing nanoimaging experiments at the lab scale and their femtosecond pulse duration and synchrony to an optical laser renders them useful for studying dynamic processes. HHG sources regularly provide high average photon flux but relatively low single-shot flux limiting time-resolved applications to adiabatic processes. Here, we show that soft X-ray lasers (SXRL) in turn provide high flux due to an X-ray lasing transition, but the coherence of an SXRL operating in the amplified-spontaneous-emission scheme is limited. The coherence properties of an SXRL seeded by an HHG source can be significantly improved allowing single-shot nanoscale imaging. In combination with ptychography, source properties are measured with high fidelity. This is applied to study the plasma dynamics of SXRL amplification in unprecedented quality.
In this contribution, we report about nanoscale imaging using a laser produced plasma source based laboratory transmission X-ray microscope (LTXM) in the water window. The highly brilliant soft X-ray radiation of the LTXM is provided by a laser-produced nitrogen plasma source focused by a multilayer condenser mirror to the sample. An objective zone plate maps the magnified image of the sample on the super resolution camera. This camera employs a deep cooled soft-X-ray CCD imaging sensor sandwiched with a xy piezo stage to allow subpixel displacements of the detector. The camera is read out using a very low noise electronics platform, also directing low µm shifts of the sensor between subsequent image acquisitions. Finally an algorithm computes a high resolution image from the individual shifted low-resolution image frames.
Near edge X-ray absorption fine structure (NEXAFS) spectroscopy in the soft X-ray range is feasible in the laboratory using laser-produced plasma sources. We present a study using seven different target materials for optimized data analysis. The emission spectra of the materials with atomic numbers ranging from Z = 6 to Z = 79 show distinct differences, rendering the adapted selection of a suitable target material for specialized experiments feasible. For NEXAFS spectroscopy a 112.5 nm thick polyimide film is investigated as a reference exemplifying the superiority of quasi-continuum like emission spectra.
Extremely fast processes happening on sub picosecond time scale can be captured by the well-known pump-probe scheme using ultrashort x-ray pulses as shutter. XFELs and femtosecond slicing beam lines on synchrotrons together-with ultra-short laser driven plasma x-ray sources (LPXs) as an attractive supplement offer exceptional parameters to unleash ultra-fast phenomenon. As pump-probe techniques based on the compact LPXs attract attention being jitter free, more precise knowledge of their emission duration, determining the measurement temporal resolution, became indispensable. We report here, for the first time, x-ray pulse duration from LPX using NIR pump x-ray probe cross-correlation method. The underlying mechanism is ultrafast relaxation of femtosecond laser-induced non-thermal electrons generated on the surface of transition metals. The emission duration of x-ray pulse is estimated by the evolution of transmission (110 ±6 fs) and fluorescence signals (129 ± 19 fs) and found in good agreement with the theoretical prediction of ≤100 fs for LPXs.
We describe measurement results on the polarisation state of amplified spontaneous emission (ASE) signal from a collisionally pumped Ni-like Ag soft X-ray laser with a transient inversion. The result obtained with a calibrated membrane beam splitter as a polarisation state (P-state) selector shows that dominance one of the mutually perpendicular electric field components (p- or s-) in the output signal depends on the hydrodynamic state of the plasma medium. Hence, the output radiation has well defined polarisation state, even if this varies from shot to shot. Two different hydrodynamic state were referred as a ”low gain” and ”high gain” regimes and the allocated P-states had dominant s- and p-component, respectively. It was also shown that due to correlations between p- and s-components in the process of coherent amplification of noise, correct description of the polarisation state requires applying the generalised theory of polarisation and formulated there the generalised degree of polarisation (DOP). The critical role of active medium gain in the polarisation development is elucidated in a broader way.
In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.
Ultrafast X-ray absorption spectroscopy (UXAS) offers the opportunity to investigate function-structure relationships of
complex organic molecules or biological functional subunits without the need of crystallization. Of special interest from
the viewpoint of structural biology is the region of K-edges of transition metals between 5 and 10 keV. Regardless of
successful application of time-resolved diffraction techniques to investigations of crystal dynamics using synchrotron
and laboratory based sources there are only very few examples for application of UXAS to revealing the structural
dynamics in biomolecular systems. This is mainly caused by the lack of broadband ultrafast x-ray sources as well as of
appropriate optics adapted to these sources. Due to the long-data-recording time in UXAS experiments the sample
integrity is mainly determined by the average power of the pump pulses inducing the structural changes. Using a fixed
energy of the pump pulse the latter one is determined by the repetition rate of the pump laser. In this paper we discuss the
prospects of UXAS comparing fs laser plasma sources with different repetition rates in combination with tailor-made
optics based on highly annealed pyrolytic graphite (HAPG).
X-ray microscopy in the water window has become a valuable imaging tool for a wide field of applications with a
resolution in the nanometer regime. The emergence and the development of laboratory based transmission X-ray
microscopes (LTXM) can be of great benefit to users, since LTXM provides access to a method previously limited to
synchrotron facilities only. In recent years, measuring times in the laboratory have been reduced to the point, where
tomography of aqueous cryofixated samples has become feasible.
We report on a laboratory full-field transmission X-ray microscope based on a laser induced plasma source located at the
Berlin Laboratory for innovative X-ray Technologies. A short introduction on full-field X-ray microscopy in the water
window is given.
We demonstrate that, with a thin disk laser-system (TDL), which provides an average power of ~15 W a spatial
resolution of Δx = 41 nm ± 3 nm (half-pitch) is feasible. An image of a diatom recorded at 15 W average laser power
with a magnification of 1125x captured in 5 min is presented.
Using the x-ray lasers as amplifiers of ultrashort x-ray pulses has been investigated as a scheme for ultimate
light sources. For successful implementation, the characteristics of the scheme should be taken into account in
designing the amplifiers. In this paper, the basic physics and characteristics of the scheme were analyzed by
using the Maxwell-Bloch equations incorporating time-dependent gain, random spontaneous emission, atomic
level degeneracy, and radiation polarization. The variation of the pulse parameters such as energy, bandwidth,
pulsewidth, and polarization were explained based on a simple mechanism of pulse growth and also compared to
that in the conventional x-ray lasers. These results should be the basic information for a practical implementation
of the scheme.
Laboratory based X-ray lasers (XRL) exhibit a broad application potential in material sciences, imaging, spectroscopy and laser plasma diagnostics if two main issues are solved: a stable, well defined output of the system and a high repetition rate for fast data acquisition. During the last few years using the grazing incidence pumping (GRIP) scheme an pump energy level as low as 1 J was demonstrated for saturated XRL operation. This pump energy could be provided in principle even by commercially available Ti:Sa laser systems. However, the repetition rate of these systems is limited to
10 Hz and the output stability of the XRL follows that of the pumping laser. To overcome this situation a dedicated high
repetition rate XRL pumping laser will be introduced here. This concept is based on a fully diode pumped solid state laser using thin Yb:YAG disks as active material. In this paper we report about the first phase of the project aimed at a high average power XRL user station based on the GRIP scheme.
High-harmonic-seeded x-ray laser became an important issue in x-ray laser development due to the possibility to obtain a
highly coherent and polarized soft x-ray source. We performed theoretical investigations into amplification of high
harmonic pulses in an x-ray lasing medium by using a model based on Maxwell-Bloch equations. From the theoretical
works, we analyze characteristics of energy extraction and temporal profile of output pulse. In addition, preliminary
experimental results and ongoing experiments related the harmonic-seeded x-ray lasers are reported.
Technological reasons stimulated enormous interest in the spectral range between 10 nm and 15 nm. One of the most important, apart from the potential to be applied in the microlithography, was the existence of the high-efficiency, spectrally highly selective (narrow-band) reflective multi-layer (ML) optics in this spectral range. Applying these optics to plasma based XUV (extreme ultra violett) sources the debris from the plasma is a serious problem. For transmissive multi-layer optics we have additionally the low figures of merit. For example, the best beam splitters have an efficiency of about 30% (energy in both parts of the splitted beam). This type of element is crucial for efficient single-shot interferometry being the main application using table-top soft x-ray lasers.
We applied capillary optical elements, to our knowledge for the first time, to XUV radiation at 13.9 nm. These optical elements help overcome the limits discussed above or at least remarkably reduce the existing difficulties. A capillary beam splitter and a focussing capillary were applied to an incoherent XUV radiation source. For the beam splitter we measured a throughput of about 80%. With the focussing capillary we obtained a spot size of 27 μm (FWHM) with a gain (intensity in the focal spot compared to the intensity behind a pinhole of the focal spot size) of 600. Advantages and disadvantages of these optics in the discussed spectral range are analyzed.
Thin films of highly oriented pyrolytic graphite (HOPG) give the opportunity to realize crystal optics with arbitrary geometry by mounting it on a mould of any shape. A specific feature of a HOPG is its mosaicity accompanied by mosaic focusing and high integral reflectivity. These characteristics are of interest for compact x-ray diagnostic tools and spectrometers. Another interesting feature is, due to the mosaic spread of the HOPG crystals, that it is possible also with a beam of low divergence to record a spectrum in a broad energy range even within one laser shot. That means that the HOPG spectrometer can act as a polychromator. The latter feature is important if irreversible changes in samples should be investigated or, e.g., if in time-resolved pump-probe experiments a spectrum should be recorded before sample degradation takes place due to high pump intensities. Different design considerations for a compact HOPG-spectrometer based on experimental and theoretical studies will be presented. For applications in plasma diagnostics and XAFS (x-ray absorption fine structure) the attainable energy resolution plays a central role and has been intensively investigated. The results of our investigations demonstrate that HOPG can be used as powerful optics for x-ray diagnostics as well as for x-ray absorption and emission spectroscopy.
With the development of EUV lithography there is an increasing need for high-accuracy at-wavelength metrology. In particular, there is an urgent need for metrology at optical components like mirrors or masks close to the production line. Sources for metrology have to fit different demands on EUV power and spectral shape than sources for steppers systems. We present the results of the radiometric characterization of a laser produced plasma (LPP)-source, newly developed at Max-Born-Institute Berlin for use in an EUV reflectometer. It is operated with a high-power pointing-stabilized laser beam (energy per pulse up to 700 mJ, 10 ns pulse duration, < ± 25 μrad pointing stability) at 532 nm which is focussed on a rotating Au target cylinder. The incident angle of the laser beam is set to 63°, the detecting angle 55° to the target normal. The source has been characterized regarding spectral photon flux, source size and source point stability. Two independently calibrated instruments, an imaging spectrometer and a double multilayer tool for in-band power measurements were used to obtain highly reliable quantitative values for the EUV emission of the Au-LPP source. Both instruments were calibrated by Physikalisch-Technische Bundesanstalt in its radiometry laboratory at the electron storage ring BESSY II. We obtained a source size of 30 μm by 50 μm (2s horizontal by vertical) and a stability of better than 2s=5 μm horizontally and 2s=9 μm vertically. A spectral photon flux of 1*10e14 /(s sr 0.1 nm) at 13.4 nm at a laser pulse energy of 630 mJ is obtained. The shot-to-shot stability of the source is about 5% (1s) for laser pulse energies above 200 mJ. For pulse energies between 200 mJ and 700 mJ, there is a linear relation between laser pulse energy and EUV output. The spectrum shows a flat continuos emission in the EUV spectral range, which is important for wavelength scanning reflectometry. High stability in total flux and spectral shape of the plasma emission as well as low debris was only obtained using a new target position for each shot. There is also a trade off between source size and EUV power. For a slightly defocused laser, an increase in EUV power up to a factor of two is obtained, while the source size also increases by about a factor of two. It is shown that an Au-LPP source provides spectrally flat reproducible emission with sufficient power at low debris conditions for the operation of a laboratory based EUV reflectometer.
The quality assurance for production of optical components for EUV lithography strongly requires at-wavelength metrology. Presently, at-wavelength characterizations of mirrors and masks are done using the synchrotron radiation of electron storage rings, e.g. BESSY II. For the production process of EUV optics, however, the immediate access to metrology tools is necessary and availability of laboratory devices is mandatory. Within the last years a stand alone laboratory EUV reflectometer for large samples has been developed It consists of a laser produced plasma (LLP) radiation source, a monochromator and a large goniometer systme. The manipulation system of the reflectometer can handle samples with diameters of up to 500 mm, thicknesses of up to 200 mm and weights of up to 30 kg. The wavelength can be varied from 10 nm to 16 nm. The spot size on the sample surface is about 2mm. The angle of incidence can be varied from 3° to 60°. In this paper, we describe the laboratory reflectometer in detail and discuss the achieved performance. First measurements of 4 inch mirrors are presented and discussed in comparison to the results obtained at the PTB soft x-ray radiometry beamline at BESSY II.
In this contribution we describe a laser plasma source for Extreme Ultraviolet Lithography (EUVL) based on a Xe-cluster target. Although Xe-clusters as target systems for EUVL are known for some time, no attempts have been made for a systematic study of the influence of the laser parameters on the EUV-emission at a well defined Xe-aggregation.
The MBI burst mode laser used offers some unique features: Within one burst (duration 800 μs) the repetition rate of single laser pulses can be adjusted between 30 and 1000 kHz. The average power per burst is about 5 kW at the maximum energy of 4 J/burst. The pulse duration of a single pulse can be adjusted from the ps- to ns-range.
We have examined the EUV-emission from the Xe-cluster target within one burst of the laser as a function of single pulse intensity and repetition rate. Based on the measured EUV-spectra the conversion efficiency at 13.4 nm wavelength in dependence on pulse duration in the range from 30 ps to 3 ns were estimated.
Large Xe-clusters have been excited with 50 fs and 2 ps pulses from a Ti:Sa multi - TW laser at 800 nm wavelength. Additionally a 10 ns Nd:YAG laser at 1064 nm wavelength was used to heat Xe-cluster/gas and a liquid Xe-spray target. Absolute yield measurements of EUV-emission in a wavelength range between 10 nm and 15 nm in combination with target variations were carried out. The ps-laser pulse has resulted in about 30 percent enhanced and spatially more uniform EUV-emission compared to fs-laser excitation. Similar emission has been obtained with ns-pulse exposure of different target modifications which also act back to the EUV-source size. Absolute emission efficiencies at 13.4 nm of up to 0.8 percent in 2pi sr and 2.2 percent bandwidth were measured.
In this article we describe a laser plasma source for Extreme Ultraviolet Lithography (EUVL) based on a liquid water jet target. Although jet targets are known for some time now, no attempts have been made to prove the functionality of the target under conditions similar to an EUVL production-line facility, that means illumination with high average power laser systems (in the multi-kW regime) at repetition rates in the kHz region. Such systems are currently under development. We used the MBI-burst laser to simulate these extreme illumination conditions. We examined the hydrodynamic stability of the target as a function of the laser repetition rate at different average laser powers (0.6kW and 5kW per burst). Additionally, the dependence of the conversion efficiency on pulse duration in the range from 30ps to 3ns was investigated. From our results one can conclude parameters for future design of driver lasers for EUVL systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.