We present, mathematically and experimentally, a novel temporally multiplexed polarimetric LADAR (TMP-LADAR) architecture which is capable of characterizing the polarimetric properties (Mueller matrix elements) of a target using a single 10 ns laser pulse. By exploiting the Kerr nonlinear optical effect, birefringence within an optical fiber can be modulated based on the instantaneous intensity of the input laser pulse, which results in temporally varying polarization states within the laser pulse exiting the fiber. We introduce a model that describes the varying polarization of a laser pulse through an optical fiber and experimentally verify the operation of this novel polarization state generator (PSG).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.