In X-ray Free-Electron Lasers (FELs), intense and coherent pulses are generated via amplification of the undulator radiation from micro-bunched electron pulses. The initial radiation is spontaneous and intrinsically stochastic, thus causing shot-to-shot fluctuations in the intensity, pointing, and spatiotemporal profile of the X-ray beam. In this work, we use deep neural networks to investigate the fluctuations in X-ray beam profiles, thereby obtaining statistical information on the lasing process. A supervised model was built to classify X-ray images, and an unsupervised one to study the distribution of beam profiles. We have found that round-shaped profiles appear more often with increasing monochromator bandwidth, suggesting that some round-shaped images can be superpositions of higher-order modes. Our results also suggest that the X-ray beam continues to evolve past the FEL saturation length towards a round-shaped beam profile.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.