The US National Science Foundation 4m Daniel K. Inouye Solar Telescope (DKIST) on Haleakala, Maui is the largest solar telescope in the world. DKIST’s superb resolution and polarimetric sensitivity will enable astronomers to explore the origins of solar magnetism, the mechanisms of coronal heating and drivers of flares and coronal mass ejections. DKIST operates as a coronagraph at infrared wavelengths, providing crucial measurements of the magnetic field in the corona. During its Operations Commissioning Phase, DKIST has already conducted a significant number of shared-risk observations for community researchers. The complex raw data are calibrated by the DKIST Data Center located in Boulder and distributed to the science community. We’ll present examples of science results and discuss lessons learned. Ongoing instrument development efforts include, an upgrade of the single-conjugate adaptive optics system to a multi-conjugate AO, the implementation of image slicers for the DL-NIRSP instrument and development of infrared detectors the DL- and CRYO-NIRSP instruments.
The Compact Doppler Magnetograph (CDM) is a space-qualified, miniaturized Doppler magnetograph, tailored to the requirements of a solar polar mission, and designed to provide photospheric line-of-sight magnetic field and Doppler velocity measurements of the solar surface. CDM is derived from the proven GONG (Global Oscillations Network Group) instrument design (Harvey et al., 1988, 1996), with a space qualified prototype developed for the Solaris solar polar MIDEX mission (Hassler et al., 2020). CDM has roughly 1/3 the mass of current state-of-the-art Doppler magnetographs (e.g., SOHO/MDI, SDO/HMI, SolO/PHI), with greatly increased sensitivity to the magnetic field (B) and Doppler velocity (v) and the capability to perform over an expanded spacecraft orbital velocity range, which is required to fit within the mission design constraints of currently feasible high latitude solar polar missions.
At future telescopes, adaptive optics systems will play a role beyond the correction of Earth's atmosphere.
These systems are capable of delivering information that is useful for instrumentation, e.g. if reconstruction
algorithms are employed to increase the spatial resolution of the scientific data. For the 4m aperture Advanced
Technology Solar Telescope (ATST), a new generation of state-of-the-art instrumentation is developed that will
deliver observations of the solar surface at unsurpassed high spatial resolution. The planned Visual Broadband
Imager (VBI) is one of those instruments. It will be able to record images at an extremely high rate and compute
reconstructed images close to the telescope's theoretical diffraction limit using a speckle interferometry algorithm
in near real-time. This algorithm has been refined to take data delivered by the adaptive optics system into
account during reconstruction. The acquisition and reconstruction process requires the use of a high-speed data
handling infrastructure to retrieve the necessary data from both adaptive optics system and instrument cameras.
We present the current design of this infrastructure for the ATST together with a feasibility analysis of the
underlying algorithms.
This poster outlines the conceptual design of the Visible-light Broad-band Imager (VBI) instrument for the Advanced Technology Solar Telescope (ATST) as it follows from scientific requirements. The VBI is scheduled to be the first-light instrument of the ATST, highlighting the telescope's high spatial resolution capabilities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.