A silicon p-i-n diode Mach-Zehnder optical modulator integrated with grating couplers is fabricated in 0.18-μm complementary metal oxide semiconductor technology. The device has an ultracompact length of 200 μm. High modulation efficiency with a figure of merit of VπL = 0.22 V mm is demonstrated. A novel pre-emphasis technique is introduced to achieve high-speed modulation, and a data transmission rate of 3 Gbps is present.
SOI (silicon-on-insulator)-based micro-resonator is the key building block of silicon photonics, which is considered as a
promising solution to alleviate the bandwidth bottleneck of on-chip interconnects. Silicon-based sub-micron waveguide,
microring and microdisk devices are investigated in Institute of Semiconductors, Chinese Academy of Sciences. The
main progress in recent years is presented in this talk, such as high Q factor single mode microdisk filters, compact thirdorder
microring filters with the through/drop port extinctions to be ~ 30/40 dB, fast microring electro-optical switches
with the switch time of < 400 ps and crosstalk < -23 dB, and > 10 Gbit/s high speed microring modulators.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.