Dual-energy computed tomography (DECT) enables material decomposition for tissues and produces additional information for PET/CT imaging to potentially improve the characterization of diseases. PET-enabled DECT (PDECT) allows the generation of PET and DECT images simultaneously with a conventional PET/CT scanner without the need for a second x-ray CT scan. In PDECT, high-energy γ-ray CT (GCT) images at 511 keV are obtained from time-of-flight (TOF) PET data and are combined with the existing x-ray CT images to form DECT imaging. We have developed a kernel-based maximum-likelihood attenuation and activity (MLAA) method that uses x-ray CT images as a priori information for noise suppression. However, our previous studies focused on GCT image reconstruction at the PET image resolution which is coarser than the image resolution of the x-ray CT. In this work, we explored the feasibility of generating super-resolution GCT images at the corresponding CT resolution. The study was conducted using both phantom and patient scans acquired with the uEXPLORER total-body PET/CT system. GCT images at the PET resolution with a pixel size of 4.0 mm × 4.0 mm and at the CT resolution with a pixel size of 1.2 mm × 1.2 mm were reconstructed using both the standard MLAA and kernel MLAA methods. The results indicated that the GCT images at the CT resolution had sharper edges and revealed more structural details compared to the images reconstructed at the PET resolution. Furthermore, images from the kernel MLAA method showed substantially improved image quality compared to those obtained with the standard MLAA method.
Image reconstruction for positron emission tomography (PET) is challenging because of the ill-conditioned tomographic problem and low counting statistics. Kernel methods address this challenge by using kernel representation to incorporate image prior information in the forward model of iterative PET image reconstruction. Existing kernel methods construct the kernels commonly using an empirical procedure, which may lead to suboptimal performance. In this paper, we describe the equivalence between the kernel representation and a trainable neural network model. A deep kernel method is proposed with the training process utilizing available image prior to seek the best way to form a set of robust kernels optimally rather than empirically. The results from computer simulations and a real patient dataset demonstrate that the proposed deep kernel method can outperform existing kernel method and neural network method for dynamic PET image reconstruction.
The PET-enabled dual-energy CT method allows dual-energy CT imaging on PET/CT scanners without the need for a second x-ray CT scan. A 511 keV γ-ray attenuation image can be reconstructed from time-of-flight PET emission data using the maximum-likelihood attenuation and activity (MLAA) algorithm. However, the attenuation image reconstructed by standard MLAA is commonly noisy. To suppress noise, we propose a neuralnetwork approach for MLAA reconstruction. The PET attenuation image is described as a function of kernelized neural networks with the flexibility of incorporating the available x-ray CT image as anatomical prior. By applying optimization transfer, the complex optimization problem of the proposed neural MLAA reconstruction is solved by a modularized iterative algorithm with each iteration decomposed into three steps: PET activity image update, attenuation image update, and neural-network learning using a weighed mean squared-error loss. The optimization algorithm is guaranteed to monotonically increase the data likelihood. The results from computer simulations demonstrated the neural MLAA algorithm can achieve a significant improvement on the γ-ray CT image quality as compared to other algorithms.
Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.
Positron Emission Tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neurology. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information. Previously we have used kernel learning to embed MR information in static PET reconstruction and direct Patlak reconstruction. Here we extend this method to direct reconstruction of nonlinear parameters in a compartment model by using the alternating direction of multiplier method (ADMM) algorithm. Simulation studies show that the proposed method can produce superior parametric images compared with existing methods.
Molecular imaging using dynamic positron emission tomography (PET) can provide in vivo images of physiologically or
biochemically important parameters. Direct reconstruction of parametric images from dynamic PET sinograms is statistically
more efficient than the conventional indirect methods, which perform image reconstruction and kinetic modeling
in two separate steps. Most existing direct reconstruction methods are derived based on a known blood input function.
This paper presents a direct reconstruction algorithm using a simplified reference tissue model, which does not require a
blood input function. We have derived a minorization-maximization algorithm to find the penalized maximum likelihood
solution. Computer simulations show that the proposed method has better bias-variance tradeoff than the conventional
indirect method for estimating parametric images of receptor binding potential using dynamic PET.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.