In this presentation we show a method capable of measuring and correcting field dependent aberration in a microscope setup without a dedicated wavefront sensor using a pupil conjugated deformable lenses in combination with anisoplanatic deconvolution.
Structured Illumination microscopy is a super-resolution imaging technique based on sample fluorescence excitation with a spatially modulated light pattern. The pattern properties as well as the capability to shift it over sample determine the quality of the final images. At the current state of the art, pattern generation and translation require bulky and non-trivial optical setups. Here we propose an integrated optical device for the versatile generation and translation of the light pattern. This device can be used as light source for a standard microscope, upgrading it to a super-resolution system.
Heterogeneity plays an important role in medicine and biology, which can be investigated by exploiting single cell analysis (SCA). Among SCA methods, imaging cytometry allows the analysis of individual 2D and 3D spatial features. Here we present a femtosecond laser fabricated optofluidic automated platform encompassing a thermo-optic phase shifter, cylindrical lenses and a microfluidic network to generate and shift a dual-color patterned light sheet within a microchannel where the samples of interest flow. The device can be used as add-on and can provide an acquisition rate of about 1 cell/second, or subnuclear resolution at the single cell level.
We present a microscopy method capable of measuring aberrations in all the poits of the field of view and to correct for the field-dependent aberrations in a closed loop multi conjugated AO system using two deformable lenses and no wavefront sensor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.