We present the results of a transmission experiment, over 110 km of field installed fiber, for an all-optical 160 Gb/s
packet switching system. The system uses in-band optical labels which are processed entirely in the optical domain
using a narrow-band all-optical filter. The label decision information is stored by an optical flip-flop, which output
controls a high-speed wavelength converter based on ultra-fast cross-phase modulation in a single semiconductor optical
amplifier. The packet switched node is located in between two different fiber sections, each having a length of 54.3-km.
The field installed fibers are located around the city of Eindhoven in the Netherlands. The results show how the all-optical
switch can effectively route the packets based on the optical information and that such packets may be
transmitted across the fiber with an acceptable penalty level.
The routing decision functionality by all-optically interconnecting semiconductor-based all-optical logic gates and flip-flops is demonstrated in the frame of an all-optical packet switching network. We experimentally show that the output of the all-optical 2-bit correlator is capable of toggling the states of the integrated flip-flop every 2.5 ns via an adaptation stage. High extinction ratios are obtained at the output of the flip-flop, which can be used to feed a high-speed wavelength converter to complete the routing functionality of the AOLS node. The potential integration of these SOA-MZI based devices make the proposed approach a very interesting solution for future packet switched optical networks.
Future multi-terabit/s optical core networks require optical technologies capable of managing ultra-high bit rate OTDM/DWDM (optical time division multiplexing/dense wavelength division multiplexing) channels at 160 Gbit/s or higher bit rates. The key functionalities in ultra-high speed network nodes are all-optical wavelength conversion, 3R-regeneration and demultiplexing of OTDM signals. Advanced optical networking techniques (optical add-drop multiplexing and optical routing) are studied in simulations and their performance evaluated considering 160 Gbit/s OTDM/DWDM channels. Performance comparison results for both OADM (optical add-drop multiplexer) and OXC (optical cross-connect) node networking functionalities are shown considering different technologies: semiconductor-optical-amplifier-based symmetric Mach-Zehnder interferometers (SOA-MZI) for wavelength conversion, signal regeneration and demultiplexing, electroabsorption-modulator-based demultiplexers, and wavelength converters based on four-wave mixing in dispersion-shifted fiber. The simulation results show that the SOA-MZI is a promising technology for all-optical signal processing in network nodes mainly due to its signal regeneration capability. At ultra-high bit rates, however, the relaxation time of SOAs considerably limits the operation. A solution to mitigate this problem is to use a differential scheme at the input of the device. Error-free wavelength conversion, signal regeneration and demultiplexing of 160 Gbit/s OTDM signals employing a SOA-MZI with a differential scheme is demonstrated by means of simulations. Furthermore, the parameters of this architecture are optimized to obtain the best performance for each optical networking functionality in OADM and OXC network nodes.
There is an increasing interest in performing many key networking functions in the optical domain to achieve bit rate transparency. Optical header processing is one such key function that may enable fast reading and forwarding of optical packets in the future all-optical packet-switched core network. Many of these optical header processing functions are enabled through the use of all-optical logic gates. The logic XOR gate is of key importance in decision and comparator circuits. A novel architecture of an N-bit logic XOR gate based on a Mach-Zehnder interferometer with feedback is proposed and its performance evaluated by means of simulations. Basically, this architecture consists of an integrated semiconductor-optical-amplifier-based Mach-Zehnder interferometer (SOA-MZI), an optical pulsed control signal, a differential transmission scheme for the input data sequences, and a feedback network. The simulation results show error-free operation at 40 Gbit/s for 16-bit-length words with extinction ratio values better than 16 dB. Furthermore, simulation results of the data power threshold needed for obtaining error-free operation as a function of the peak power of the control pulses are also presented, showing an optimum operating point at about 8 mW. An important application for the proposed SOA-MZI architecture is label processing directly at the optical domain in high-speed all-optical label swapping networks.
Transmission of light through linear defects in two-dimensional (2D) photonic crystals has been already successfully demonstrated in two ways: numerical simulations and experimental measurements. Recently, novel waveguides have been proposed in which the propagation of photons is performed via hopping due to overlapping between nearest-neighbors defect cavities. These waveguides are commonly referred to as coupled-cavity waveguides (CCW). In this work, we present a comprehensive analysis of the light transmission (TM modes) in CCW's created in hexagonal 2D photonic crystals made of high-index dielectric rods. Numerical simulations of the transmission are performed using a 2D Finite-Difference Time-Domain method. A plane wave algorithm and a simple one-dimensional (1D) tight-binding model are employed to describe the miniband which allows the light transport. It is shown that modifying the individual cavities along the CCW one can control the average frequency and the dispersion relation of the miniband. The results also show that this novel guiding method can be used to develop 1310nm/1550nm Coarse-WDM optical demultiplexers employing bended waveguides.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.