We present an update on the overall integration progress of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), now scheduled for first light in early-2021, with almost all components now arrived at the observatory. We also present a summary of the current planning behind the 5-year initial phase of survey operations, and some detailed end-to-end science simulations that have been implemented to evaluate the final on-sky performance after data processing. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 mini integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000.
WEAVE is a new wide-field multi-object spectroscopy (MOS) facility proposed for the prime focus of the 4.2m William Herschel Telescope. The facility comprises a new 2-degree field-of-view Prime Focus Corrector (PFC) with a 1000-multiplex fibre positioner, a small number of individually deployable integral field units, and a large single integral field unit (IFU). The IFUs and the MOS fibres can be used to feed a dual-beam spectrograph that will provide full coverage of the majority of the visible spectrum in a single exposure at a spectral resolution of ~5000 or modest wavelength coverage in both arms at a resolution ~20000. In order to compensate the field rotation, the Prime Focus Rotator (PFR) is assembled in between the WEAVE Fiber Positioner (system that positions the fibers in the focal plane) and with the Central Can (contains the Prime Focus corrector optics) on the William Herschel Telescope (WHT). The Prime Focus Rotator must provide a rotation degree of freedom for the Fibre Positioner with a high bending stiffness (causing a deflection smaller than 0.008° between interface flanges) adding the minimum mass possible to the system (less than 700kg). This is easily identified as the main design driver to be considered. The Prime Focus Rotator positions the Fibre Positioner to an accuracy of 5 arcsec when tracking and guides all the fibres and other power and control lines through a cable wrap, for which the available space is limited. IDOM proposal to comply with these coupled requirements consists of an optimized structural system with a slightly preloaded cross roller bearing providing the highest possible stiffness to weight ratio. The rotation is driven by means of a direct drive motor powered by a servo drive. For the Cable Wrap, a compact design based on a concept previously developed by IDOM for the Folded Cassegrain Sets the GTC was proposed.
We present an update on the overall construction progress of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), now that all the major fabrication contracts are in place. We also present a summary of the current planning behind the 5-year initial phase of survey operations, and some detailed end-to-end science simulations that have been effected to evaluate the final on-sky performance after data processing. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project has experienced some delays in procurement and now has first light expected for the middle of 2019.
KEYWORDS: Control systems, Spectrographs, Databases, Telescopes, Human-machine interfaces, Data acquisition, Picture Archiving and Communication System, Calibration, Observatories, Sensors
WEAVE is the next-generation spectroscopic facility for the William Herschel Telescope (WHT) 1,2. WEAVE offers multi-object (1000 fibres) and integral-field spectroscopy at two resolutions (R ~ 5000, 20000) over a 2-deg field of view at prime focus and will mainly provide follow up of ground-based (LOFAR) and space-based (GAIA) surveys.
The Observatory Control System (OCS) is responsible for providing the software control and feedback framework through which WEAVE will be operated. This paper summarizes the design of the different OCS subsystems and the interfaces between them and other WEAVE components.
In the remainder of this paper, Section 2 outlines the other WEAVE systems with which the OCS interacts, Section 3 describes the system architecture, Section 4 comments on system-architecture decisions, Section 5 describes the main components of the OCS, Section 6 outlines the life-cycle of an OCS Observing Block and, finally, Section 7 gives an overview of the OCS testing plan.
KEYWORDS: Control systems, Device simulation, Telecommunications, LabVIEW, Telescopes, Interfaces, Systems modeling, Mathematical modeling, Picture Archiving and Communication System, Switches
When an alt-azimuth telescope is tracking at a specific field, it is necessary to use a de-rotator system to compensate the Earth’s rotation of the field of view. In order, to keep the telescope tracking the field of view selected, the instrument will need to a rotation system for compensating it [1]. The new WEAVE [2] two degrees field of view requires a new field de-rotator on the top-end of the telescope. The rotator system has been designed with a direct drive motor which eliminates the need for mechanical transmission elements such as gearboxes, speed reducers, and worm gear drives. This design is a huge advantage for the system performance and lifetime because it eliminates undesirable characteristics such as long-time drift, elasticity, and backlash. The hardware control system has been developed with a Rockwell servo-drive and controller. The rotator has to be controlled by the high-level software which is also responsible for the telescope control. This paper summarizes the model developed for simulating and the software which will be used to accept the rotator system. A performance study is also carried out to test the CIP (Common Industrial Protocol) for communications between the high-level software and the rotator hardware.
We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also present a summary of the current planning behind the 5-year initial phase of survey operations. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the manufacturing and integration phase with first light expected for early of 2018.
We present an overview of and status report on the WEAVE next-generation spectroscopy facility for the William
Herschel Telescope (WHT). WEAVE principally targets optical ground-based follow up of upcoming ground-based
(LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree
prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object
(MOS) fibres, 20 integral field units, or a single large IFU for each observation. The fibres are fed to a single
spectrograph, with a pair of 8k(spectral) x 6k (spatial) pixel cameras, located within the WHT GHRIL enclosure on the
telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single
exposure, or a high resolution mode with limited coverage in each arm at R~20000. The project is now in the final
design and early procurement phase, with commissioning at the telescope expected in 2017.
We present the preliminary design of the WEAVE next generation spectroscopy facility for the William Herschel
Telescope (WHT), principally targeting optical ground-based follow up of upcoming ground-based (LOFAR) and spacebased
(Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2 degree prime focus field of view
at the WHT, with a buffered pick and place positioner system hosting 1000 multi-object (MOS) fibres or up to 30
integral field units for each observation. The fibres are fed to a single spectrograph, with a pair of 8k(spectral) x 6k
(spatial) pixel cameras, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting
observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with
limited coverage in each arm at R~20000.
The computing equipment of the 2.5-m Isaac Newton Telescope and the 1.0-m Jacobus Kapteyn Telescope is being upgraded to improve improve observing efficiency and ease of use, and to reduce maintenance and operation costs. These upgrades have been staged over a period of two years to reduce the impact on operations. Elements of this architecture will be used in the forthcoming upgrades to the 4.2-m William Herschel Telescope. The revised systems have allowed the introduction of a major new instrument for the INT: the Wide Field Camera, shortly to be equipped with a mosaic of four 4096 by 2048 EEV CCDs. On the JKT, the new equipment paves the way for remote operation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.