The authors developed an achromatic speckle pattern interferometer able to measure in-plane displacements in polar coordinates. It has been used to measure combined stresses resulting from the superposition of mechanical loading and residual stresses. Relaxation methods have been applied to produce on the surface of the specimen a displacement field that can be used to determine the amount of combined stresses. Two relaxation methods are explored in this work: blind hole-drilling and indentation. The first one results from a blind hole drilled with a high-speed drilling unit in the area of interest. The measured displacement data is fitted in an appropriate model to quantify the stress level using an indirect approach based on a set of finite element coefficients. The second approach uses indentation, where a hard spherical tip is firmly pressed against the surface to be measured with a predetermined indentation load. A plastic flow occurs around the indentation mark producing a radial in-plane displacement field that is related to the amount of combined stresses. Also in this case, displacements are measured by the radial interferometer and used to determine the stresses by least square fitting it to a displacement field determined by calibration. Both approaches are used to quantify the amount of bending stresses and moment in eight sections of a 12 m long 200 mm diameter steel pipe submitted to a known transverse loading. Reference values of bending stresses are also determined by strain gauges. The comparison between the four results is discussed in the paper.
This paper presents a modular device based on digital speckle pattern interferometry (DSPI) combined with an instrumented indenter. The system is divided in two modules, the interferometric and the indentation module. The former uses a diffractive optical element (DOE) to obtain radial in-plane sensitivity. This module measures the whole shallow displacement field generated by the indentation print on the surface of the material under testing. The latter module is sized suitably with the interferometric module. The indentation module uses a mechanical/hydraulic scheme to provide the system a high loading capability. A piezoelectric loading cell and an inductive transducer are used to simultaneously measure the load applied on the ball indenter and its penetration on the material. For the experimental tests, a bench capable to apply in a specific pipe a very well-known bending moment was used. This bench is mounted with two 12- meters pipes disposed horizontally. A transverse load is applied in the central cross-section of both pipes. The load application is made by a hydraulic actuator and measured with a load cell. Strain-gages are also used in a half-bridge configuration to measure the strain in the 8 cross-sections distributed along the pipe length. Each cross-section was measured by the proposed instrumented indentation system and compared with the strain-gages and load cell measurements. The results obtained show an uncertainty level around 20-30% of the measured bending stress. Good agreement was found between the computed bending stress using the strain-gages, load cell and the proposed method using the instrumented indentation system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.